Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1650.f1 |
1650i1 |
1650.f |
1650i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.132603755$ |
$1$ |
|
$8$ |
$144$ |
$-0.462788$ |
$-625/1188$ |
$1.11238$ |
$2.39642$ |
$[1, 0, 1, -1, 8]$ |
\(y^2+xy+y=x^3-x+8\) |
132.2.0.? |
$[(1, 2)]$ |
1650.p1 |
1650p1 |
1650.p |
1650p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{8} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$720$ |
$0.341931$ |
$-625/1188$ |
$1.11238$ |
$3.69986$ |
$[1, 1, 1, -13, 1031]$ |
\(y^2+xy+y=x^3+x^2-13x+1031\) |
132.2.0.? |
$[ ]$ |
4950.p1 |
4950s1 |
4950.p |
4950s |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{8} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.587165278$ |
$1$ |
|
$6$ |
$5760$ |
$0.891237$ |
$-625/1188$ |
$1.11238$ |
$3.99690$ |
$[1, -1, 0, -117, -27959]$ |
\(y^2+xy=x^3-x^2-117x-27959\) |
132.2.0.? |
$[(44, 203)]$ |
4950.bb1 |
4950bg1 |
4950.bb |
4950bg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{2} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.669288570$ |
$1$ |
|
$2$ |
$1152$ |
$0.086519$ |
$-625/1188$ |
$1.11238$ |
$2.86178$ |
$[1, -1, 1, -5, -223]$ |
\(y^2+xy+y=x^3-x^2-5x-223\) |
132.2.0.? |
$[(15, 46)]$ |
13200.bf1 |
13200bk1 |
13200.bf |
13200bk |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{2} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.230360$ |
$-625/1188$ |
$1.11238$ |
$2.74787$ |
$[0, -1, 0, -8, -528]$ |
\(y^2=x^3-x^2-8x-528\) |
132.2.0.? |
$[ ]$ |
13200.bq1 |
13200cr1 |
13200.bq |
13200cr |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{8} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17280$ |
$1.035078$ |
$-625/1188$ |
$1.11238$ |
$3.76564$ |
$[0, 1, 0, -208, -66412]$ |
\(y^2=x^3+x^2-208x-66412\) |
132.2.0.? |
$[ ]$ |
18150.f1 |
18150u1 |
18150.f |
18150u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{8} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$2.540682103$ |
$1$ |
|
$4$ |
$86400$ |
$1.540878$ |
$-625/1188$ |
$1.11238$ |
$4.26230$ |
$[1, 1, 0, -1575, -1380375]$ |
\(y^2+xy=x^3+x^2-1575x-1380375\) |
132.2.0.? |
$[(116, 63)]$ |
18150.de1 |
18150ct1 |
18150.de |
18150ct |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17280$ |
$0.736160$ |
$-625/1188$ |
$1.11238$ |
$3.27758$ |
$[1, 0, 0, -63, -11043]$ |
\(y^2+xy=x^3-63x-11043\) |
132.2.0.? |
$[ ]$ |
39600.u1 |
39600fd1 |
39600.u |
39600fd |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{8} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.509970514$ |
$1$ |
|
$6$ |
$138240$ |
$1.584385$ |
$-625/1188$ |
$1.11238$ |
$3.99751$ |
$[0, 0, 0, -1875, 1791250]$ |
\(y^2=x^3-1875x+1791250\) |
132.2.0.? |
$[(-25, 1350)]$ |
39600.eo1 |
39600ea1 |
39600.eo |
39600ea |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{2} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$0.779666$ |
$-625/1188$ |
$1.11238$ |
$3.08535$ |
$[0, 0, 0, -75, 14330]$ |
\(y^2=x^3-75x+14330\) |
132.2.0.? |
$[ ]$ |
52800.m1 |
52800p1 |
52800.m |
52800p |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{2} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.853602188$ |
$1$ |
|
$4$ |
$27648$ |
$0.576933$ |
$-625/1188$ |
$1.11238$ |
$2.78001$ |
$[0, -1, 0, -33, 4257]$ |
\(y^2=x^3-x^2-33x+4257\) |
132.2.0.? |
$[(-7, 64)]$ |
52800.r1 |
52800fu1 |
52800.r |
52800fu |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{8} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$138240$ |
$1.381653$ |
$-625/1188$ |
$1.11238$ |
$3.66804$ |
$[0, -1, 0, -833, -530463]$ |
\(y^2=x^3-x^2-833x-530463\) |
132.2.0.? |
$[ ]$ |
52800.he1 |
52800dq1 |
52800.he |
52800dq |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{8} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.516790363$ |
$1$ |
|
$4$ |
$138240$ |
$1.381653$ |
$-625/1188$ |
$1.11238$ |
$3.66804$ |
$[0, 1, 0, -833, 530463]$ |
\(y^2=x^3+x^2-833x+530463\) |
132.2.0.? |
$[(283, 4800)]$ |
52800.hj1 |
52800hc1 |
52800.hj |
52800hc |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{2} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$0.576933$ |
$-625/1188$ |
$1.11238$ |
$2.78001$ |
$[0, 1, 0, -33, -4257]$ |
\(y^2=x^3+x^2-33x-4257\) |
132.2.0.? |
$[ ]$ |
54450.cx1 |
54450cc1 |
54450.cx |
54450cc |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{2} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.291643320$ |
$1$ |
|
$6$ |
$138240$ |
$1.285467$ |
$-625/1188$ |
$1.11238$ |
$3.55184$ |
$[1, -1, 0, -567, 298161]$ |
\(y^2+xy=x^3-x^2-567x+298161\) |
132.2.0.? |
$[(135, 1566)]$ |
54450.eq1 |
54450hg1 |
54450.eq |
54450hg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{8} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.786049496$ |
$1$ |
|
$2$ |
$691200$ |
$2.090187$ |
$-625/1188$ |
$1.11238$ |
$4.43736$ |
$[1, -1, 1, -14180, 37255947]$ |
\(y^2+xy+y=x^3-x^2-14180x+37255947\) |
132.2.0.? |
$[(69, 6015)]$ |
80850.bl1 |
80850r1 |
80850.bl |
80850r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7^{6} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$3.482761725$ |
$1$ |
|
$2$ |
$47520$ |
$0.510167$ |
$-625/1188$ |
$1.11238$ |
$2.60429$ |
$[1, 1, 0, -25, -2855]$ |
\(y^2+xy=x^3+x^2-25x-2855\) |
132.2.0.? |
$[(36, 193)]$ |
80850.hb1 |
80850hg1 |
80850.hb |
80850hg |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{8} \cdot 7^{6} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$237600$ |
$1.314886$ |
$-625/1188$ |
$1.11238$ |
$3.45883$ |
$[1, 0, 0, -638, -355608]$ |
\(y^2+xy=x^3-638x-355608\) |
132.2.0.? |
$[ ]$ |
145200.z1 |
145200ez1 |
145200.z |
145200ez |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{2} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1.323494501$ |
$1$ |
|
$2$ |
$414720$ |
$1.429308$ |
$-625/1188$ |
$1.11238$ |
$3.40396$ |
$[0, -1, 0, -1008, 706752]$ |
\(y^2=x^3-x^2-1008x+706752\) |
132.2.0.? |
$[(-62, 726)]$ |
145200.kk1 |
145200ba1 |
145200.kk |
145200ba |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{8} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$2.157330120$ |
$1$ |
|
$2$ |
$2073600$ |
$2.234028$ |
$-625/1188$ |
$1.11238$ |
$4.21641$ |
$[0, 1, 0, -25208, 88293588]$ |
\(y^2=x^3+x^2-25208x+88293588\) |
132.2.0.? |
$[(172, 9438)]$ |
158400.bw1 |
158400i1 |
158400.bw |
158400i |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{8} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.930958$ |
$-625/1188$ |
$1.11238$ |
$3.88201$ |
$[0, 0, 0, -7500, 14330000]$ |
\(y^2=x^3-7500x+14330000\) |
132.2.0.? |
$[ ]$ |
158400.cr1 |
158400kl1 |
158400.cr |
158400kl |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{2} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$2.360235397$ |
$1$ |
|
$2$ |
$221184$ |
$1.126240$ |
$-625/1188$ |
$1.11238$ |
$3.07547$ |
$[0, 0, 0, -300, -114640]$ |
\(y^2=x^3-300x-114640\) |
132.2.0.? |
$[(86, 704)]$ |
158400.mq1 |
158400fm1 |
158400.mq |
158400fm |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{2} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1.876250313$ |
$1$ |
|
$2$ |
$221184$ |
$1.126240$ |
$-625/1188$ |
$1.11238$ |
$3.07547$ |
$[0, 0, 0, -300, 114640]$ |
\(y^2=x^3-300x+114640\) |
132.2.0.? |
$[(44, 432)]$ |
158400.ng1 |
158400jp1 |
158400.ng |
158400jp |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{8} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.930958$ |
$-625/1188$ |
$1.11238$ |
$3.88201$ |
$[0, 0, 0, -7500, -14330000]$ |
\(y^2=x^3-7500x-14330000\) |
132.2.0.? |
$[ ]$ |
242550.cc1 |
242550cc1 |
242550.cc |
242550cc |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{8} \cdot 7^{6} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1900800$ |
$1.864193$ |
$-625/1188$ |
$1.11238$ |
$3.68399$ |
$[1, -1, 0, -5742, 9601416]$ |
\(y^2+xy=x^3-x^2-5742x+9601416\) |
132.2.0.? |
$[ ]$ |
242550.jk1 |
242550jk1 |
242550.jk |
242550jk |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 2^{2} \cdot 3^{9} \cdot 5^{2} \cdot 7^{6} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$380160$ |
$1.059473$ |
$-625/1188$ |
$1.11238$ |
$2.90517$ |
$[1, -1, 1, -230, 76857]$ |
\(y^2+xy+y=x^3-x^2-230x+76857\) |
132.2.0.? |
$[ ]$ |
278850.j1 |
278850j1 |
278850.j |
278850j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{8} \cdot 11 \cdot 13^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1.973108076$ |
$1$ |
|
$12$ |
$1693440$ |
$1.624407$ |
$-625/1188$ |
$1.11238$ |
$3.41353$ |
$[1, 1, 0, -2200, 2276500]$ |
\(y^2+xy=x^3+x^2-2200x+2276500\) |
132.2.0.? |
$[(135, 2045), (-34, 1538)]$ |
278850.iz1 |
278850iz1 |
278850.iz |
278850iz |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 11 \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1.868295779$ |
$1$ |
|
$0$ |
$338688$ |
$0.819687$ |
$-625/1188$ |
$1.11238$ |
$2.64336$ |
$[1, 0, 0, -88, 18212]$ |
\(y^2+xy=x^3-88x+18212\) |
132.2.0.? |
$[(-61/2, 1075/2)]$ |
435600.dj1 |
435600dj1 |
435600.dj |
435600dj |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{2} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3317760$ |
$1.978613$ |
$-625/1188$ |
$1.11238$ |
$3.62361$ |
$[0, 0, 0, -9075, -19073230]$ |
\(y^2=x^3-9075x-19073230\) |
132.2.0.? |
$[ ]$ |
435600.rh1 |
435600rh1 |
435600.rh |
435600rh |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{8} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$3.504630971$ |
$1$ |
|
$2$ |
$16588800$ |
$2.783333$ |
$-625/1188$ |
$1.11238$ |
$4.36732$ |
$[0, 0, 0, -226875, -2384153750]$ |
\(y^2=x^3-226875x-2384153750\) |
132.2.0.? |
$[(2975, 152550)]$ |
476850.cp1 |
476850cp1 |
476850.cp |
476850cp |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 11 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$3.753465208$ |
$1$ |
|
$2$ |
$688896$ |
$0.953819$ |
$-625/1188$ |
$1.11238$ |
$2.65800$ |
$[1, 1, 0, -150, 40680]$ |
\(y^2+xy=x^3+x^2-150x+40680\) |
132.2.0.? |
$[(-34, 106)]$ |
476850.im1 |
476850im1 |
476850.im |
476850im |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{8} \cdot 11 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3444480$ |
$1.758537$ |
$-625/1188$ |
$1.11238$ |
$3.39656$ |
$[1, 0, 0, -3763, 5092517]$ |
\(y^2+xy=x^3-3763x+5092517\) |
132.2.0.? |
$[ ]$ |