| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 12255.b1 |
12255b1 |
12255.b |
12255b |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19 \cdot 43 \) |
\( - 3^{10} \cdot 5^{14} \cdot 19^{4} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$86$ |
$2$ |
$0$ |
$1.849790054$ |
$1$ |
|
$0$ |
$3319680$ |
$3.416336$ |
$-5849020933249476332032897024/3734327290213641357421875$ |
$1.02740$ |
$6.87080$ |
$[0, 1, 1, -37536446, 128360293535]$ |
\(y^2+y=x^3+x^2-37536446x+128360293535\) |
86.2.0.? |
$[(133129/4, 40078093/4)]$ |
| 36765.a1 |
36765b1 |
36765.a |
36765b |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 19 \cdot 43 \) |
\( - 3^{16} \cdot 5^{14} \cdot 19^{4} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$26557440$ |
$3.965641$ |
$-5849020933249476332032897024/3734327290213641357421875$ |
$1.02740$ |
$6.77979$ |
$[0, 0, 1, -337828017, -3466065753468]$ |
\(y^2+y=x^3-337828017x-3466065753468\) |
86.2.0.? |
$[ ]$ |
| 61275.a1 |
61275e1 |
61275.a |
61275e |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 19 \cdot 43 \) |
\( - 3^{10} \cdot 5^{20} \cdot 19^{4} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1.362164274$ |
$1$ |
|
$4$ |
$79672320$ |
$4.221054$ |
$-5849020933249476332032897024/3734327290213641357421875$ |
$1.02740$ |
$6.74366$ |
$[0, -1, 1, -938411158, 16046913514218]$ |
\(y^2+y=x^3-x^2-938411158x+16046913514218\) |
86.2.0.? |
$[(22207, 2481637)]$ |
| 183825.v1 |
183825v1 |
183825.v |
183825v |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \cdot 43 \) |
\( - 3^{16} \cdot 5^{20} \cdot 19^{4} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$637378560$ |
$4.770363$ |
$-5849020933249476332032897024/3734327290213641357421875$ |
$1.02740$ |
$6.67626$ |
$[0, 0, 1, -8445700425, -433258219183469]$ |
\(y^2+y=x^3-8445700425x-433258219183469\) |
86.2.0.? |
$[ ]$ |
| 196080.a1 |
196080u1 |
196080.a |
196080u |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 19 \cdot 43 \) |
\( - 2^{12} \cdot 3^{10} \cdot 5^{14} \cdot 19^{4} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$10.21395680$ |
$1$ |
|
$0$ |
$132787200$ |
$4.109482$ |
$-5849020933249476332032897024/3734327290213641357421875$ |
$1.02740$ |
$5.99012$ |
$[0, -1, 0, -600583141, -8215659369395]$ |
\(y^2=x^3-x^2-600583141x-8215659369395\) |
86.2.0.? |
$[(18217641313/784, 66895640859375/784)]$ |
| 232845.b1 |
232845b1 |
232845.b |
232845b |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3^{10} \cdot 5^{14} \cdot 19^{10} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1195084800$ |
$4.888557$ |
$-5849020933249476332032897024/3734327290213641357421875$ |
$1.02740$ |
$6.66332$ |
$[0, -1, 1, -13550657126, -880504557300784]$ |
\(y^2+y=x^3-x^2-13550657126x-880504557300784\) |
86.2.0.? |
$[ ]$ |