Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
14586.b1 |
14586a1 |
14586.b |
14586a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{22} \cdot 3^{7} \cdot 11^{5} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$29172$ |
$2$ |
$0$ |
$0.792295776$ |
$1$ |
|
$4$ |
$234080$ |
$2.114914$ |
$-5275941807135921123097/326485867713527808$ |
$0.97660$ |
$5.22737$ |
$[1, 1, 0, -362681, 88298661]$ |
\(y^2+xy=x^3+x^2-362681x+88298661\) |
29172.2.0.? |
$[(-110, 11319)]$ |
43758.v1 |
43758p1 |
43758.v |
43758p |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{22} \cdot 3^{13} \cdot 11^{5} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$2.092635277$ |
$1$ |
|
$2$ |
$1872640$ |
$2.664219$ |
$-5275941807135921123097/326485867713527808$ |
$0.97660$ |
$5.30680$ |
$[1, -1, 1, -3264134, -2387327979]$ |
\(y^2+xy+y=x^3-x^2-3264134x-2387327979\) |
29172.2.0.? |
$[(6473, 494427)]$ |
116688.q1 |
116688v1 |
116688.q |
116688v |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{34} \cdot 3^{7} \cdot 11^{5} \cdot 13 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5617920$ |
$2.808060$ |
$-5275941807135921123097/326485867713527808$ |
$0.97660$ |
$5.00861$ |
$[0, 1, 0, -5802904, -5662720108]$ |
\(y^2=x^3+x^2-5802904x-5662720108\) |
29172.2.0.? |
$[ ]$ |
160446.x1 |
160446s1 |
160446.x |
160446s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{22} \cdot 3^{7} \cdot 11^{11} \cdot 13 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$28089600$ |
$3.313862$ |
$-5275941807135921123097/326485867713527808$ |
$0.97660$ |
$5.38194$ |
$[1, 1, 1, -43884464, -117744940015]$ |
\(y^2+xy+y=x^3+x^2-43884464x-117744940015\) |
29172.2.0.? |
$[ ]$ |
189618.bg1 |
189618u1 |
189618.bg |
189618u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 2^{22} \cdot 3^{7} \cdot 11^{5} \cdot 13^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$1.657442592$ |
$1$ |
|
$2$ |
$39325440$ |
$3.397388$ |
$-5275941807135921123097/326485867713527808$ |
$0.97660$ |
$5.39044$ |
$[1, 1, 1, -61293177, 194298623943]$ |
\(y^2+xy+y=x^3+x^2-61293177x+194298623943\) |
29172.2.0.? |
$[(5231, 127176)]$ |
247962.r1 |
247962r1 |
247962.r |
247962r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 17^{2} \) |
\( - 2^{22} \cdot 3^{7} \cdot 11^{5} \cdot 13 \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$67415040$ |
$3.531521$ |
$-5275941807135921123097/326485867713527808$ |
$0.97660$ |
$5.40360$ |
$[1, 0, 1, -104814960, 434545025854]$ |
\(y^2+xy+y=x^3-104814960x+434545025854\) |
29172.2.0.? |
$[ ]$ |
350064.by1 |
350064by1 |
350064.by |
350064by |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{34} \cdot 3^{13} \cdot 11^{5} \cdot 13 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$44943360$ |
$3.357368$ |
$-5275941807135921123097/326485867713527808$ |
$0.97660$ |
$5.09393$ |
$[0, 0, 0, -52226139, 152841216778]$ |
\(y^2=x^3-52226139x+152841216778\) |
29172.2.0.? |
$[ ]$ |
364650.fy1 |
364650fy1 |
364650.fy |
364650fy |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{22} \cdot 3^{7} \cdot 5^{6} \cdot 11^{5} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$0.091391339$ |
$1$ |
|
$12$ |
$29962240$ |
$2.919632$ |
$-5275941807135921123097/326485867713527808$ |
$0.97660$ |
$4.66753$ |
$[1, 0, 0, -9067038, 11055466692]$ |
\(y^2+xy=x^3-9067038x+11055466692\) |
29172.2.0.? |
$[(6492, 471954)]$ |
466752.bw1 |
466752bw1 |
466752.bw |
466752bw |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{40} \cdot 3^{7} \cdot 11^{5} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$15.50857236$ |
$1$ |
|
$0$ |
$44943360$ |
$3.154633$ |
$-5275941807135921123097/326485867713527808$ |
$0.97660$ |
$4.79530$ |
$[0, -1, 0, -23211617, -45278549247]$ |
\(y^2=x^3-x^2-23211617x-45278549247\) |
29172.2.0.? |
$[(24915937813/1891, 2449525024686080/1891)]$ |
466752.ea1 |
466752ea1 |
466752.ea |
466752ea |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{40} \cdot 3^{7} \cdot 11^{5} \cdot 13 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$44943360$ |
$3.154633$ |
$-5275941807135921123097/326485867713527808$ |
$0.97660$ |
$4.79530$ |
$[0, 1, 0, -23211617, 45278549247]$ |
\(y^2=x^3+x^2-23211617x+45278549247\) |
29172.2.0.? |
$[ ]$ |
481338.bm1 |
481338bm1 |
481338.bm |
481338bm |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 2^{22} \cdot 3^{13} \cdot 11^{11} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$29172$ |
$2$ |
$0$ |
$3.903825635$ |
$1$ |
|
$2$ |
$224716800$ |
$3.863167$ |
$-5275941807135921123097/326485867713527808$ |
$0.97660$ |
$5.43384$ |
$[1, -1, 0, -394960176, 3178718420224]$ |
\(y^2+xy=x^3-x^2-394960176x+3178718420224\) |
29172.2.0.? |
$[(492000, 344578832)]$ |