| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 5934.g1 |
5934g1 |
5934.g |
5934g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43 \) |
\( - 2^{13} \cdot 3^{8} \cdot 23 \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$7912$ |
$2$ |
$0$ |
$0.252008760$ |
$1$ |
|
$6$ |
$22464$ |
$1.363810$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.56625$ |
$[1, 1, 1, -357, -477141]$ |
\(y^2+xy+y=x^3+x^2-357x-477141\) |
7912.2.0.? |
$[(919, 27404)]$ |
| 17802.c1 |
17802j1 |
17802.c |
17802j |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 23 \cdot 43 \) |
\( - 2^{13} \cdot 3^{14} \cdot 23 \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$179712$ |
$1.913116$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.72719$ |
$[1, -1, 0, -3213, 12879589]$ |
\(y^2+xy=x^3-x^2-3213x+12879589\) |
7912.2.0.? |
$[ ]$ |
| 47472.o1 |
47472p1 |
47472.o |
47472p |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 23 \cdot 43 \) |
\( - 2^{25} \cdot 3^{8} \cdot 23 \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$539136$ |
$2.056957$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.45690$ |
$[0, 1, 0, -5712, 30525588]$ |
\(y^2=x^3+x^2-5712x+30525588\) |
7912.2.0.? |
$[ ]$ |
| 136482.u1 |
136482u1 |
136482.u |
136482u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23^{2} \cdot 43 \) |
\( - 2^{13} \cdot 3^{8} \cdot 23^{7} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$1.533142131$ |
$1$ |
|
$4$ |
$11860992$ |
$2.931557$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.94645$ |
$[1, 1, 1, -188864, 5803483745]$ |
\(y^2+xy+y=x^3+x^2-188864x+5803483745\) |
7912.2.0.? |
$[(1209, 85093)]$ |
| 142416.m1 |
142416i1 |
142416.m |
142416i |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 23 \cdot 43 \) |
\( - 2^{25} \cdot 3^{14} \cdot 23 \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$5.907268964$ |
$1$ |
|
$2$ |
$4313088$ |
$2.606262$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.59976$ |
$[0, 0, 0, -51411, -824242286]$ |
\(y^2=x^3-51411x-824242286\) |
7912.2.0.? |
$[(13401, 1550848)]$ |
| 148350.be1 |
148350bz1 |
148350.be |
148350bz |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 23 \cdot 43 \) |
\( - 2^{13} \cdot 3^{8} \cdot 5^{6} \cdot 23 \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$3.191607707$ |
$1$ |
|
$2$ |
$2875392$ |
$2.168530$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.14285$ |
$[1, 0, 1, -8926, -59624752]$ |
\(y^2+xy+y=x^3-8926x-59624752\) |
7912.2.0.? |
$[(682, 15521)]$ |
| 189888.h1 |
189888o1 |
189888.h |
189888o |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 23 \cdot 43 \) |
\( - 2^{31} \cdot 3^{8} \cdot 23 \cdot 43^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$2.329751413$ |
$1$ |
|
$6$ |
$4313088$ |
$2.403530$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.29073$ |
$[0, -1, 0, -22849, 244227553]$ |
\(y^2=x^3-x^2-22849x+244227553\) |
7912.2.0.? |
$[(-389, 13932), (3013, 165888)]$ |
| 189888.bf1 |
189888bc1 |
189888.bf |
189888bc |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 23 \cdot 43 \) |
\( - 2^{31} \cdot 3^{8} \cdot 23 \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4313088$ |
$2.403530$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.29073$ |
$[0, 1, 0, -22849, -244227553]$ |
\(y^2=x^3+x^2-22849x-244227553\) |
7912.2.0.? |
$[ ]$ |
| 255162.m1 |
255162m1 |
255162.m |
255162m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{13} \cdot 3^{8} \cdot 23 \cdot 43^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$0.806861790$ |
$1$ |
|
$4$ |
$41513472$ |
$3.244411$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.99940$ |
$[1, 0, 1, -660132, 37924152994]$ |
\(y^2+xy+y=x^3-660132x+37924152994\) |
7912.2.0.? |
$[(10388, 1068150)]$ |
| 290766.cm1 |
290766cm1 |
290766.cm |
290766cm |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 23 \cdot 43 \) |
\( - 2^{13} \cdot 3^{8} \cdot 7^{6} \cdot 23 \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$0.099805879$ |
$1$ |
|
$12$ |
$8626176$ |
$2.336765$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.08172$ |
$[1, 0, 0, -17494, 163606820]$ |
\(y^2+xy=x^3-17494x+163606820\) |
7912.2.0.? |
$[(788, 24890)]$ |
| 409446.bc1 |
409446bc1 |
409446.bc |
409446bc |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 23^{2} \cdot 43 \) |
\( - 2^{13} \cdot 3^{14} \cdot 23^{7} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$13.34592278$ |
$1$ |
|
$0$ |
$94887936$ |
$3.480862$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$5.03602$ |
$[1, -1, 0, -1699776, -156695760896]$ |
\(y^2+xy=x^3-x^2-1699776x-156695760896\) |
7912.2.0.? |
$[(56955047/98, 189548889307/98)]$ |
| 445050.eb1 |
445050eb1 |
445050.eb |
445050eb |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 23 \cdot 43 \) |
\( - 2^{13} \cdot 3^{14} \cdot 5^{6} \cdot 23 \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$2.664221066$ |
$1$ |
|
$2$ |
$23003136$ |
$2.717834$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.29972$ |
$[1, -1, 1, -80330, 1609868297]$ |
\(y^2+xy+y=x^3-x^2-80330x+1609868297\) |
7912.2.0.? |
$[(-1071, 22135)]$ |