Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5070.f1 |
5070d1 |
5070.f |
5070d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1872$ |
$0.267981$ |
$-50308609/1105920$ |
$0.98509$ |
$3.10942$ |
$[1, 1, 0, -42, -684]$ |
\(y^2+xy=x^3+x^2-42x-684\) |
120.2.0.? |
$[ ]$ |
5070.o1 |
5070l1 |
5070.o |
5070l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$24336$ |
$1.550455$ |
$-50308609/1105920$ |
$0.98509$ |
$4.91338$ |
$[1, 1, 1, -7186, -1466977]$ |
\(y^2+xy+y=x^3+x^2-7186x-1466977\) |
120.2.0.? |
$[ ]$ |
15210.t1 |
15210r1 |
15210.t |
15210r |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5 \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$4.385003700$ |
$1$ |
|
$2$ |
$194688$ |
$2.099762$ |
$-50308609/1105920$ |
$0.98509$ |
$5.03734$ |
$[1, -1, 0, -64674, 39543700]$ |
\(y^2+xy=x^3-x^2-64674x+39543700\) |
120.2.0.? |
$[(209, 5822)]$ |
15210.bb1 |
15210bg1 |
15210.bb |
15210bg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$0.141546168$ |
$1$ |
|
$10$ |
$14976$ |
$0.817287$ |
$-50308609/1105920$ |
$0.98509$ |
$3.43920$ |
$[1, -1, 1, -383, 18087]$ |
\(y^2+xy+y=x^3-x^2-383x+18087\) |
120.2.0.? |
$[(35, 198)]$ |
25350.bd1 |
25350z1 |
25350.bd |
25350z |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{7} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$584064$ |
$2.355175$ |
$-50308609/1105920$ |
$0.98509$ |
$5.08584$ |
$[1, 0, 1, -179651, -183012802]$ |
\(y^2+xy+y=x^3-179651x-183012802\) |
120.2.0.? |
$[ ]$ |
25350.dj1 |
25350cu1 |
25350.dj |
25350cu |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{7} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$0.193816189$ |
$1$ |
|
$10$ |
$44928$ |
$1.072701$ |
$-50308609/1105920$ |
$0.98509$ |
$3.56820$ |
$[1, 0, 0, -1063, -83383]$ |
\(y^2+xy=x^3-1063x-83383\) |
120.2.0.? |
$[(62, 269)]$ |
40560.bp1 |
40560cc1 |
40560.bp |
40560cc |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{3} \cdot 5 \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$2.303679491$ |
$1$ |
|
$2$ |
$584064$ |
$2.243603$ |
$-50308609/1105920$ |
$0.98509$ |
$4.73437$ |
$[0, 1, 0, -114976, 93656564]$ |
\(y^2=x^3+x^2-114976x+93656564\) |
120.2.0.? |
$[(410, 10752)]$ |
40560.cv1 |
40560cs1 |
40560.cv |
40560cs |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{3} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$44928$ |
$0.961128$ |
$-50308609/1105920$ |
$0.98509$ |
$3.28396$ |
$[0, 1, 0, -680, 42420]$ |
\(y^2=x^3+x^2-680x+42420\) |
120.2.0.? |
$[ ]$ |
76050.ck1 |
76050bi1 |
76050.ck |
76050bi |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{7} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$359424$ |
$1.622005$ |
$-50308609/1105920$ |
$0.98509$ |
$3.80590$ |
$[1, -1, 0, -9567, 2251341]$ |
\(y^2+xy=x^3-x^2-9567x+2251341\) |
120.2.0.? |
$[ ]$ |
76050.dy1 |
76050en1 |
76050.dy |
76050en |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{7} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$0.281784289$ |
$1$ |
|
$8$ |
$4672512$ |
$2.904480$ |
$-50308609/1105920$ |
$0.98509$ |
$5.17520$ |
$[1, -1, 1, -1616855, 4941345647]$ |
\(y^2+xy+y=x^3-x^2-1616855x+4941345647\) |
120.2.0.? |
$[(1479, 75310)]$ |
121680.by1 |
121680dn1 |
121680.by |
121680dn |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{9} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$3.857574245$ |
$1$ |
|
$0$ |
$359424$ |
$1.510435$ |
$-50308609/1105920$ |
$0.98509$ |
$3.53879$ |
$[0, 0, 0, -6123, -1151462]$ |
\(y^2=x^3-6123x-1151462\) |
120.2.0.? |
$[(1117/3, 512/3)]$ |
121680.dv1 |
121680ew1 |
121680.dv |
121680ew |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{9} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4672512$ |
$2.792908$ |
$-50308609/1105920$ |
$0.98509$ |
$4.85312$ |
$[0, 0, 0, -1034787, -2529762014]$ |
\(y^2=x^3-1034787x-2529762014\) |
120.2.0.? |
$[ ]$ |
162240.bn1 |
162240ec1 |
162240.bn |
162240ec |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{3} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$359424$ |
$1.307701$ |
$-50308609/1105920$ |
$0.98509$ |
$3.25115$ |
$[0, -1, 0, -2721, 342081]$ |
\(y^2=x^3-x^2-2721x+342081\) |
120.2.0.? |
$[ ]$ |
162240.cq1 |
162240ci1 |
162240.cq |
162240ci |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{3} \cdot 5 \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$3.984788616$ |
$1$ |
|
$0$ |
$4672512$ |
$2.590176$ |
$-50308609/1105920$ |
$0.98509$ |
$4.53396$ |
$[0, -1, 0, -459905, 749712417]$ |
\(y^2=x^3-x^2-459905x+749712417\) |
120.2.0.? |
$[(111661/5, 37033984/5)]$ |
162240.es1 |
162240fy1 |
162240.es |
162240fy |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{3} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$359424$ |
$1.307701$ |
$-50308609/1105920$ |
$0.98509$ |
$3.25115$ |
$[0, 1, 0, -2721, -342081]$ |
\(y^2=x^3+x^2-2721x-342081\) |
120.2.0.? |
$[ ]$ |
162240.hu1 |
162240fj1 |
162240.hu |
162240fj |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{3} \cdot 5 \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$3.943411964$ |
$1$ |
|
$0$ |
$4672512$ |
$2.590176$ |
$-50308609/1105920$ |
$0.98509$ |
$4.53396$ |
$[0, 1, 0, -459905, -749712417]$ |
\(y^2=x^3+x^2-459905x-749712417\) |
120.2.0.? |
$[(234451/5, 113178624/5)]$ |
202800.bn1 |
202800fd1 |
202800.bn |
202800fd |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{3} \cdot 5^{7} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$2.140312574$ |
$1$ |
|
$8$ |
$1078272$ |
$1.765848$ |
$-50308609/1105920$ |
$0.98509$ |
$3.64168$ |
$[0, -1, 0, -17008, 5336512]$ |
\(y^2=x^3-x^2-17008x+5336512\) |
120.2.0.? |
$[(552, 12800), (-152/3, 64000/3)]$ |
202800.eh1 |
202800ge1 |
202800.eh |
202800ge |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{3} \cdot 5^{7} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14017536$ |
$3.048321$ |
$-50308609/1105920$ |
$0.98509$ |
$4.90106$ |
$[0, -1, 0, -2874408, 11712819312]$ |
\(y^2=x^3-x^2-2874408x+11712819312\) |
120.2.0.? |
$[ ]$ |
248430.de1 |
248430de1 |
248430.de |
248430de |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5 \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1.947890054$ |
$1$ |
|
$2$ |
$673920$ |
$1.240936$ |
$-50308609/1105920$ |
$0.98509$ |
$3.07514$ |
$[1, 0, 1, -2084, 228386]$ |
\(y^2+xy+y=x^3-2084x+228386\) |
120.2.0.? |
$[(-24, 526)]$ |
248430.jv1 |
248430jv1 |
248430.jv |
248430jv |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5 \cdot 7^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$0.449468063$ |
$1$ |
|
$6$ |
$8760960$ |
$2.523411$ |
$-50308609/1105920$ |
$0.98509$ |
$4.31396$ |
$[1, 0, 0, -352115, 502116705]$ |
\(y^2+xy=x^3-352115x+502116705\) |
120.2.0.? |
$[(5422, 394777)]$ |
486720.ch1 |
486720ch1 |
486720.ch |
486720ch |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{9} \cdot 5 \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$6.340099127$ |
$1$ |
|
$2$ |
$37380096$ |
$3.139484$ |
$-50308609/1105920$ |
$0.98509$ |
$4.65695$ |
$[0, 0, 0, -4139148, -20238096112]$ |
\(y^2=x^3-4139148x-20238096112\) |
120.2.0.? |
$[(5836, 392904)]$ |
486720.gf1 |
486720gf1 |
486720.gf |
486720gf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{9} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$37380096$ |
$3.139484$ |
$-50308609/1105920$ |
$0.98509$ |
$4.65695$ |
$[0, 0, 0, -4139148, 20238096112]$ |
\(y^2=x^3-4139148x+20238096112\) |
120.2.0.? |
$[ ]$ |
486720.kq1 |
486720kq1 |
486720.kq |
486720kq |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{9} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$3.740009097$ |
$1$ |
|
$0$ |
$2875392$ |
$1.857008$ |
$-50308609/1105920$ |
$0.98509$ |
$3.48175$ |
$[0, 0, 0, -24492, 9211696]$ |
\(y^2=x^3-24492x+9211696\) |
120.2.0.? |
$[(-4954/5, 313344/5)]$ |
486720.ou1 |
486720ou1 |
486720.ou |
486720ou |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{9} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2875392$ |
$1.857008$ |
$-50308609/1105920$ |
$0.98509$ |
$3.48175$ |
$[0, 0, 0, -24492, -9211696]$ |
\(y^2=x^3-24492x-9211696\) |
120.2.0.? |
$[ ]$ |