Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
7098.o1 |
7098m1 |
7098.o |
7098m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{11} \cdot 7^{3} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1.320798763$ |
$1$ |
|
$4$ |
$535392$ |
$2.908699$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$6.69804$ |
$[1, 0, 1, -7838393, 9140787164]$ |
\(y^2+xy+y=x^3-7838393x+9140787164\) |
2184.2.0.? |
$[(2718, 87619)]$ |
7098.y1 |
7098bf1 |
7098.y |
7098bf |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{11} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.016637435$ |
$1$ |
|
$24$ |
$41184$ |
$1.626225$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$4.96253$ |
$[1, 0, 0, -46381, 4157009]$ |
\(y^2+xy=x^3-46381x+4157009\) |
2184.2.0.? |
$[(170, 1007)]$ |
21294.bb1 |
21294bl1 |
21294.bb |
21294bl |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{17} \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$329472$ |
$2.175529$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$5.07690$ |
$[1, -1, 0, -417429, -112239243]$ |
\(y^2+xy=x^3-x^2-417429x-112239243\) |
2184.2.0.? |
$[ ]$ |
21294.bv1 |
21294ci1 |
21294.bv |
21294ci |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{17} \cdot 7^{3} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4283136$ |
$3.458004$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$6.62109$ |
$[1, -1, 1, -70545533, -246801253435]$ |
\(y^2+xy+y=x^3-x^2-70545533x-246801253435\) |
2184.2.0.? |
$[ ]$ |
49686.j1 |
49686u1 |
49686.j |
49686u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{11} \cdot 7^{9} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$27.45814890$ |
$1$ |
|
$0$ |
$25698816$ |
$3.881653$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$6.57242$ |
$[1, 1, 0, -384081233, -3135674078571]$ |
\(y^2+xy=x^3+x^2-384081233x-3135674078571\) |
2184.2.0.? |
$[(1172052933234825/37103, 40093087497596588507979/37103)]$ |
49686.cj1 |
49686co1 |
49686.cj |
49686co |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{11} \cdot 7^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1976832$ |
$2.599178$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$5.14923$ |
$[1, 1, 1, -2272670, -1428126757]$ |
\(y^2+xy+y=x^3+x^2-2272670x-1428126757\) |
2184.2.0.? |
$[ ]$ |
56784.n1 |
56784bp1 |
56784.n |
56784bp |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{11} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$12.46075736$ |
$1$ |
|
$0$ |
$988416$ |
$2.319370$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$4.77970$ |
$[0, -1, 0, -742096, -266048576]$ |
\(y^2=x^3-x^2-742096x-266048576\) |
2184.2.0.? |
$[(1544994/25, 1781460278/25)]$ |
56784.ba1 |
56784ce1 |
56784.ba |
56784ce |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{11} \cdot 7^{3} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12849408$ |
$3.601845$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$6.18553$ |
$[0, -1, 0, -125414280, -585010378512]$ |
\(y^2=x^3-x^2-125414280x-585010378512\) |
2184.2.0.? |
$[ ]$ |
149058.bo1 |
149058fh1 |
149058.bo |
149058fh |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{17} \cdot 7^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15814656$ |
$3.148483$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$5.22769$ |
$[1, -1, 0, -20454030, 38538968404]$ |
\(y^2+xy=x^3-x^2-20454030x+38538968404\) |
2184.2.0.? |
$[ ]$ |
149058.gw1 |
149058bp1 |
149058.gw |
149058bp |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{17} \cdot 7^{9} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1.825526229$ |
$1$ |
|
$4$ |
$205590528$ |
$4.430962$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$6.51963$ |
$[1, -1, 1, -3456731102, 84659743390317]$ |
\(y^2+xy+y=x^3-x^2-3456731102x+84659743390317\) |
2184.2.0.? |
$[(-19815, 12067043)]$ |
170352.cn1 |
170352bd1 |
170352.cn |
170352bd |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{17} \cdot 7^{3} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$8.803793804$ |
$1$ |
|
$2$ |
$102795264$ |
$4.151154$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$6.16861$ |
$[0, 0, 0, -1128728523, 15796408948346]$ |
\(y^2=x^3-1128728523x+15796408948346\) |
2184.2.0.? |
$[(6847711, 17918964882)]$ |
170352.ef1 |
170352by1 |
170352.ef |
170352by |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{17} \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7907328$ |
$2.868679$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$4.89099$ |
$[0, 0, 0, -6678867, 7189990418]$ |
\(y^2=x^3-6678867x+7189990418\) |
2184.2.0.? |
$[ ]$ |
177450.j1 |
177450jq1 |
177450.j |
177450jq |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{11} \cdot 5^{6} \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5765760$ |
$2.430943$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$4.43987$ |
$[1, 1, 0, -1159525, 519626125]$ |
\(y^2+xy=x^3+x^2-1159525x+519626125\) |
2184.2.0.? |
$[ ]$ |
177450.hs1 |
177450dz1 |
177450.hs |
177450dz |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{11} \cdot 5^{6} \cdot 7^{3} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$74954880$ |
$3.713417$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$5.71317$ |
$[1, 1, 1, -195959813, 1142598395531]$ |
\(y^2+xy+y=x^3+x^2-195959813x+1142598395531\) |
2184.2.0.? |
$[ ]$ |
227136.bo1 |
227136ht1 |
227136.bo |
227136ht |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{11} \cdot 7^{3} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$102795264$ |
$3.948418$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$5.82747$ |
$[0, -1, 0, -501657121, 4680584685217]$ |
\(y^2=x^3-x^2-501657121x+4680584685217\) |
2184.2.0.? |
$[ ]$ |
227136.db1 |
227136ir1 |
227136.db |
227136ir |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{11} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1.638143557$ |
$1$ |
|
$4$ |
$7907328$ |
$2.665943$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$4.57965$ |
$[0, -1, 0, -2968385, 2131356993]$ |
\(y^2=x^3-x^2-2968385x+2131356993\) |
2184.2.0.? |
$[(529, 26624)]$ |
227136.gv1 |
227136v1 |
227136.gv |
227136v |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{11} \cdot 7^{3} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$2.093101919$ |
$1$ |
|
$4$ |
$102795264$ |
$3.948418$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$5.82747$ |
$[0, 1, 0, -501657121, -4680584685217]$ |
\(y^2=x^3+x^2-501657121x-4680584685217\) |
2184.2.0.? |
$[(32039, 3483648)]$ |
227136.hm1 |
227136bk1 |
227136.hm |
227136bk |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{31} \cdot 3^{11} \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7907328$ |
$2.665943$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$4.57965$ |
$[0, 1, 0, -2968385, -2131356993]$ |
\(y^2=x^3+x^2-2968385x-2131356993\) |
2184.2.0.? |
$[ ]$ |
397488.gx1 |
397488gx1 |
397488.gx |
397488gx |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{11} \cdot 7^{9} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$2.141619736$ |
$1$ |
|
$4$ |
$616771584$ |
$4.574799$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$6.15753$ |
$[0, 1, 0, -6145299736, 200670850429076]$ |
\(y^2=x^3+x^2-6145299736x+200670850429076\) |
2184.2.0.? |
$[(629750, 496065024)]$ |
397488.ip1 |
397488ip1 |
397488.ip |
397488ip |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{11} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.850956131$ |
$1$ |
|
$4$ |
$47443968$ |
$3.292328$ |
$-5022437771811277/497757560832$ |
$1.03078$ |
$4.96388$ |
$[0, 1, 0, -36362720, 91327386996]$ |
\(y^2=x^3+x^2-36362720x+91327386996\) |
2184.2.0.? |
$[(940, 240786)]$ |