| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 15288.b1 |
15288z1 |
15288.b |
15288z |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{11} \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$76032$ |
$1.517714$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.44561$ |
$[0, -1, 0, -31712, -2304084]$ |
\(y^2=x^3-x^2-31712x-2304084\) |
2184.2.0.? |
$[ ]$ |
| 15288.be1 |
15288bf1 |
15288.be |
15288bf |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{11} \cdot 7^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$532224$ |
$2.490669$ |
$-5020930768142/389191959$ |
$0.98259$ |
$5.65741$ |
$[0, 1, 0, -1553904, 793408608]$ |
\(y^2=x^3+x^2-1553904x+793408608\) |
2184.2.0.? |
$[ ]$ |
| 30576.bm1 |
30576g1 |
30576.bm |
30576g |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{11} \cdot 7^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1064448$ |
$2.490669$ |
$-5020930768142/389191959$ |
$0.98259$ |
$5.27772$ |
$[0, -1, 0, -1553904, -793408608]$ |
\(y^2=x^3-x^2-1553904x-793408608\) |
2184.2.0.? |
$[ ]$ |
| 30576.bx1 |
30576bf1 |
30576.bx |
30576bf |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{11} \cdot 7^{3} \cdot 13^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.058754044$ |
$1$ |
|
$44$ |
$152064$ |
$1.517714$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.14725$ |
$[0, 1, 0, -31712, 2304084]$ |
\(y^2=x^3+x^2-31712x+2304084\) |
2184.2.0.? |
$[(118, 468), (100, 378)]$ |
| 45864.e1 |
45864p1 |
45864.e |
45864p |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{17} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$9.968668971$ |
$1$ |
|
$0$ |
$4257792$ |
$3.039974$ |
$-5020930768142/389191959$ |
$0.98259$ |
$5.69248$ |
$[0, 0, 0, -13985139, -21436017554]$ |
\(y^2=x^3-13985139x-21436017554\) |
2184.2.0.? |
$[(16184210/61, 933175404/61)]$ |
| 45864.bv1 |
45864v1 |
45864.bv |
45864v |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{17} \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$608256$ |
$2.067020$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.60471$ |
$[0, 0, 0, -285411, 62495678]$ |
\(y^2=x^3-285411x+62495678\) |
2184.2.0.? |
$[ ]$ |
| 91728.x1 |
91728bd1 |
91728.x |
91728bd |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{17} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$5.655228106$ |
$1$ |
|
$0$ |
$8515584$ |
$3.039974$ |
$-5020930768142/389191959$ |
$0.98259$ |
$5.34716$ |
$[0, 0, 0, -13985139, 21436017554]$ |
\(y^2=x^3-13985139x+21436017554\) |
2184.2.0.? |
$[(15337/2, 1244061/2)]$ |
| 91728.fx1 |
91728bu1 |
91728.fx |
91728bu |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{17} \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1216512$ |
$2.067020$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.32538$ |
$[0, 0, 0, -285411, -62495678]$ |
\(y^2=x^3-285411x-62495678\) |
2184.2.0.? |
$[ ]$ |
| 122304.j1 |
122304ch1 |
122304.j |
122304ch |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 3^{11} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1.273259442$ |
$1$ |
|
$4$ |
$8515584$ |
$2.837242$ |
$-5020930768142/389191959$ |
$0.98259$ |
$5.00817$ |
$[0, -1, 0, -6215617, 6353484481]$ |
\(y^2=x^3-x^2-6215617x+6353484481\) |
2184.2.0.? |
$[(2385, 71344)]$ |
| 122304.ea1 |
122304fp1 |
122304.ea |
122304fp |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 3^{11} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$4.829498748$ |
$1$ |
|
$2$ |
$1216512$ |
$1.864288$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.01148$ |
$[0, -1, 0, -126849, 18559521]$ |
\(y^2=x^3-x^2-126849x+18559521\) |
2184.2.0.? |
$[(635, 13916)]$ |
| 122304.ex1 |
122304ir1 |
122304.ex |
122304ir |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 3^{11} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1.267109255$ |
$1$ |
|
$2$ |
$8515584$ |
$2.837242$ |
$-5020930768142/389191959$ |
$0.98259$ |
$5.00817$ |
$[0, 1, 0, -6215617, -6353484481]$ |
\(y^2=x^3+x^2-6215617x-6353484481\) |
2184.2.0.? |
$[(6533, 481572)]$ |
| 122304.ih1 |
122304dq1 |
122304.ih |
122304dq |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 3^{11} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.962671039$ |
$1$ |
|
$4$ |
$1216512$ |
$1.864288$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.01148$ |
$[0, 1, 0, -126849, -18559521]$ |
\(y^2=x^3+x^2-126849x-18559521\) |
2184.2.0.? |
$[(555, 9072)]$ |
| 198744.bn1 |
198744dx1 |
198744.bn |
198744dx |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{11} \cdot 3^{11} \cdot 7^{3} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12773376$ |
$2.800190$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.77242$ |
$[0, -1, 0, -5359384, -5083510004]$ |
\(y^2=x^3-x^2-5359384x-5083510004\) |
2184.2.0.? |
$[ ]$ |
| 198744.bz1 |
198744cg1 |
198744.bz |
198744cg |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{11} \cdot 3^{11} \cdot 7^{9} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$3.012751698$ |
$1$ |
|
$0$ |
$89413632$ |
$3.773144$ |
$-5020930768142/389191959$ |
$0.98259$ |
$5.72944$ |
$[0, 1, 0, -262609832, 1744169151024]$ |
\(y^2=x^3+x^2-262609832x+1744169151024\) |
2184.2.0.? |
$[(-49475/2, 14085981/2)]$ |
| 366912.bd1 |
366912bd1 |
366912.bd |
366912bd |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 3^{17} \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9732096$ |
$2.413593$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.18198$ |
$[0, 0, 0, -1141644, -499965424]$ |
\(y^2=x^3-1141644x-499965424\) |
2184.2.0.? |
$[ ]$ |
| 366912.ce1 |
366912ce1 |
366912.ce |
366912ce |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 3^{17} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1.716430964$ |
$1$ |
|
$2$ |
$9732096$ |
$2.413593$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.18198$ |
$[0, 0, 0, -1141644, 499965424]$ |
\(y^2=x^3-1141644x+499965424\) |
2184.2.0.? |
$[(1736, 61236)]$ |
| 366912.om1 |
366912om1 |
366912.om |
366912om |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 3^{17} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1.258421774$ |
$1$ |
|
$4$ |
$68124672$ |
$3.386547$ |
$-5020930768142/389191959$ |
$0.98259$ |
$5.09321$ |
$[0, 0, 0, -55940556, 171488140432]$ |
\(y^2=x^3-55940556x+171488140432\) |
2184.2.0.? |
$[(7778, 454896)]$ |
| 366912.pp1 |
366912pp1 |
366912.pp |
366912pp |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 3^{17} \cdot 7^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$68124672$ |
$3.386547$ |
$-5020930768142/389191959$ |
$0.98259$ |
$5.09321$ |
$[0, 0, 0, -55940556, -171488140432]$ |
\(y^2=x^3-55940556x-171488140432\) |
2184.2.0.? |
$[ ]$ |
| 382200.eb1 |
382200eb1 |
382200.eb |
382200eb |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{11} \cdot 5^{6} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$8.707959095$ |
$1$ |
|
$0$ |
$57480192$ |
$3.295387$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.99193$ |
$[0, -1, 0, -38847608, 99253771212]$ |
\(y^2=x^3-x^2-38847608x+99253771212\) |
2184.2.0.? |
$[(20989/10, 301843087/10)]$ |
| 382200.im1 |
382200im1 |
382200.im |
382200im |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{11} \cdot 5^{6} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$6.758966180$ |
$1$ |
|
$0$ |
$8211456$ |
$2.322433$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.08360$ |
$[0, 1, 0, -792808, -289596112]$ |
\(y^2=x^3+x^2-792808x-289596112\) |
2184.2.0.? |
$[(43541/2, 9054423/2)]$ |
| 397488.q1 |
397488q1 |
397488.q |
397488q |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{11} \cdot 3^{11} \cdot 7^{9} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$178827264$ |
$3.773144$ |
$-5020930768142/389191959$ |
$0.98259$ |
$5.42141$ |
$[0, -1, 0, -262609832, -1744169151024]$ |
\(y^2=x^3-x^2-262609832x-1744169151024\) |
2184.2.0.? |
$[ ]$ |
| 397488.jr1 |
397488jr1 |
397488.jr |
397488jr |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{11} \cdot 3^{11} \cdot 7^{3} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.518465885$ |
$1$ |
|
$4$ |
$25546752$ |
$2.800190$ |
$-5020930768142/389191959$ |
$0.98259$ |
$4.51584$ |
$[0, 1, 0, -5359384, 5083510004]$ |
\(y^2=x^3+x^2-5359384x+5083510004\) |
2184.2.0.? |
$[(4580, 276822)]$ |