Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
35594.b1 |
35594b1 |
35594.b |
35594b |
$1$ |
$1$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2^{10} \cdot 13^{4} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$148$ |
$16$ |
$0$ |
$1.274657856$ |
$1$ |
|
$4$ |
$23040$ |
$0.717997$ |
$-4652805537/29246464$ |
$0.96757$ |
$3.04925$ |
$[1, -1, 0, -386, -9964]$ |
\(y^2+xy=x^3-x^2-386x-9964\) |
4.8.0.b.1, 148.16.0.? |
$[(31, 69)]$ |
35594.d1 |
35594e1 |
35594.d |
35594e |
$1$ |
$1$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2^{10} \cdot 13^{4} \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.16.0.2 |
|
$4$ |
$16$ |
$0$ |
$1.115237657$ |
$1$ |
|
$4$ |
$852480$ |
$2.523457$ |
$-4652805537/29246464$ |
$0.96757$ |
$5.11658$ |
$[1, -1, 1, -528691, -509463917]$ |
\(y^2+xy+y=x^3-x^2-528691x-509463917\) |
4.16.0-4.b.1.1 |
$[(1027, 4962)]$ |
284752.g1 |
284752g1 |
284752.g |
284752g |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 37^{2} \) |
\( - 2^{22} \cdot 13^{4} \cdot 37^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$148$ |
$16$ |
$0$ |
$5.358029947$ |
$1$ |
|
$8$ |
$552960$ |
$1.411144$ |
$-4652805537/29246464$ |
$0.96757$ |
$3.20666$ |
$[0, 0, 0, -6179, 643874]$ |
\(y^2=x^3-6179x+643874\) |
4.8.0.b.1, 148.16.0.? |
$[(46, 676), (215, 3042)]$ |
284752.n1 |
284752n1 |
284752.n |
284752n |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 37^{2} \) |
\( - 2^{22} \cdot 13^{4} \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.16.0.2 |
|
$4$ |
$16$ |
$0$ |
$5.361625767$ |
$1$ |
|
$2$ |
$20459520$ |
$3.216602$ |
$-4652805537/29246464$ |
$0.96757$ |
$4.93171$ |
$[0, 0, 0, -8459051, 32614149722]$ |
\(y^2=x^3-8459051x+32614149722\) |
4.16.0-4.b.1.1 |
$[(3223, 197054)]$ |
320346.b1 |
320346b1 |
320346.b |
320346b |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 13 \cdot 37^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 13^{4} \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$12$ |
$16$ |
$0$ |
$0.774312375$ |
$1$ |
|
$2$ |
$27279360$ |
$3.072762$ |
$-4652805537/29246464$ |
$0.96757$ |
$4.74973$ |
$[1, -1, 0, -4758216, 13760283968]$ |
\(y^2+xy=x^3-x^2-4758216x+13760283968\) |
4.8.0.b.1, 12.16.0-4.b.1.1 |
$[(29776, 5110648)]$ |
320346.x1 |
320346x1 |
320346.x |
320346x |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 13 \cdot 37^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 13^{4} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$444$ |
$16$ |
$0$ |
$0.771850384$ |
$1$ |
|
$4$ |
$737280$ |
$1.267303$ |
$-4652805537/29246464$ |
$0.96757$ |
$3.04071$ |
$[1, -1, 1, -3476, 272503]$ |
\(y^2+xy+y=x^3-x^2-3476x+272503\) |
4.8.0.b.1, 444.16.0.? |
$[(77, 637)]$ |
462722.d1 |
462722d1 |
462722.d |
462722d |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{10} \cdot 13^{10} \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$52$ |
$16$ |
$0$ |
$14.43319907$ |
$1$ |
|
$0$ |
$143216640$ |
$3.805931$ |
$-4652805537/29246464$ |
$0.96757$ |
$5.29028$ |
$[1, -1, 0, -89348726, -1119560271244]$ |
\(y^2+xy=x^3-x^2-89348726x-1119560271244\) |
4.8.0.b.1, 52.16.0-4.b.1.1 |
$[(1770481852/19, 74479767582518/19)]$ |
462722.o1 |
462722o1 |
462722.o |
462722o |
$1$ |
$1$ |
\( 2 \cdot 13^{2} \cdot 37^{2} \) |
\( - 2^{10} \cdot 13^{10} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$1924$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3870720$ |
$2.000473$ |
$-4652805537/29246464$ |
$0.96757$ |
$3.62944$ |
$[1, -1, 1, -65266, -22086671]$ |
\(y^2+xy+y=x^3-x^2-65266x-22086671\) |
4.8.0.b.1, 1924.16.0.? |
$[ ]$ |