Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
193550.o1 |
193550cg1 |
193550.o |
193550cg |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{34} \cdot 5^{9} \cdot 7^{2} \cdot 79^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15373440$ |
$3.100430$ |
$-42298759185902121413/107219563577344$ |
$0.98412$ |
$5.22229$ |
$[1, 1, 0, -33202950, 73787156500]$ |
\(y^2+xy=x^3+x^2-33202950x+73787156500\) |
20.2.0.a.1 |
$[ ]$ |
193550.be1 |
193550ct1 |
193550.be |
193550ct |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{34} \cdot 5^{9} \cdot 7^{8} \cdot 79^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$26.66801356$ |
$1$ |
|
$0$ |
$107614080$ |
$4.073387$ |
$-42298759185902121413/107219563577344$ |
$0.98412$ |
$6.18139$ |
$[1, 0, 1, -1626944576, -25313875513202]$ |
\(y^2+xy+y=x^3-1626944576x-25313875513202\) |
20.2.0.a.1 |
$[(135729285687764113/1437963, 36406386161608233632249417/1437963)]$ |
193550.cb1 |
193550n1 |
193550.cb |
193550n |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{34} \cdot 5^{3} \cdot 7^{8} \cdot 79^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$21522816$ |
$3.268665$ |
$-42298759185902121413/107219563577344$ |
$0.98412$ |
$5.38813$ |
$[1, 1, 1, -65077783, -202537035219]$ |
\(y^2+xy+y=x^3+x^2-65077783x-202537035219\) |
20.2.0.a.1 |
$[ ]$ |
193550.cz1 |
193550bf1 |
193550.cz |
193550bf |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{34} \cdot 5^{3} \cdot 7^{2} \cdot 79^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$0.389116896$ |
$1$ |
|
$6$ |
$3074688$ |
$2.295712$ |
$-42298759185902121413/107219563577344$ |
$0.98412$ |
$4.42902$ |
$[1, 0, 0, -1328118, 590297252]$ |
\(y^2+xy=x^3-1328118x+590297252\) |
20.2.0.a.1 |
$[(652, 954)]$ |