Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
12870.u1 |
12870i1 |
12870.u |
12870i |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{9} \cdot 3^{3} \cdot 5^{3} \cdot 11^{9} \cdot 13 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$108864$ |
$1.888147$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$4.85745$ |
$[1, -1, 0, -9984, 11082240]$ |
\(y^2+xy=x^3-x^2-9984x+11082240\) |
3.8.0-3.a.1.2, 17160.16.0.? |
$[ ]$ |
12870.bg1 |
12870bd2 |
12870.bg |
12870bd |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{9} \cdot 3^{9} \cdot 5^{3} \cdot 11^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$17160$ |
$16$ |
$0$ |
$3.906647515$ |
$1$ |
|
$2$ |
$326592$ |
$2.437454$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$5.55405$ |
$[1, -1, 1, -89858, -299130623]$ |
\(y^2+xy+y=x^3-x^2-89858x-299130623\) |
3.8.0-3.a.1.1, 17160.16.0.? |
$[(721, 2879)]$ |
64350.bq1 |
64350a2 |
64350.bq |
64350a |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{9} \cdot 3^{9} \cdot 5^{9} \cdot 11^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$14.74606713$ |
$1$ |
|
$0$ |
$7838208$ |
$3.242172$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$5.61888$ |
$[1, -1, 0, -2246442, -37393574284]$ |
\(y^2+xy=x^3-x^2-2246442x-37393574284\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 3432.8.0.?, 17160.16.0.? |
$[(218271529/31, 3221283023863/31)]$ |
64350.ef1 |
64350cw1 |
64350.ef |
64350cw |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{9} \cdot 3^{3} \cdot 5^{9} \cdot 11^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$0.251872853$ |
$1$ |
|
$8$ |
$2612736$ |
$2.692867$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$5.02353$ |
$[1, -1, 1, -249605, 1385030397]$ |
\(y^2+xy+y=x^3-x^2-249605x+1385030397\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 3432.8.0.?, 17160.16.0.? |
$[(-601, 36600)]$ |
102960.bt1 |
102960cg2 |
102960.bt |
102960cg |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{21} \cdot 3^{9} \cdot 5^{3} \cdot 11^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7838208$ |
$3.130600$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$5.27407$ |
$[0, 0, 0, -1437723, 19145797578]$ |
\(y^2=x^3-1437723x+19145797578\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 17160.16.0.? |
$[ ]$ |
102960.dv1 |
102960ck1 |
102960.dv |
102960ck |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{21} \cdot 3^{3} \cdot 5^{3} \cdot 11^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2612736$ |
$2.581295$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$4.70297$ |
$[0, 0, 0, -159747, -709103614]$ |
\(y^2=x^3-159747x-709103614\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 17160.16.0.? |
$[ ]$ |
141570.s1 |
141570ey2 |
141570.s |
141570ey |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{9} \cdot 5^{3} \cdot 11^{15} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$39191040$ |
$3.636402$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$5.64421$ |
$[1, -1, 0, -10872780, 398175477200]$ |
\(y^2+xy=x^3-x^2-10872780x+398175477200\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 1560.8.0.?, 17160.16.0.? |
$[ ]$ |
141570.ek1 |
141570cg1 |
141570.ek |
141570cg |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{3} \cdot 5^{3} \cdot 11^{15} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13063680$ |
$3.087093$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$5.08845$ |
$[1, -1, 1, -1208087, -14746837201]$ |
\(y^2+xy+y=x^3-x^2-1208087x-14746837201\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 1560.8.0.?, 17160.16.0.? |
$[ ]$ |
167310.cg1 |
167310fb2 |
167310.cg |
167310fb |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 5^{3} \cdot 11^{9} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$2.060983364$ |
$1$ |
|
$4$ |
$54867456$ |
$3.719929$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$5.64915$ |
$[1, -1, 0, -15185949, -657235535995]$ |
\(y^2+xy=x^3-x^2-15185949x-657235535995\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 1320.8.0.?, 17160.16.0.? |
$[(103789, 33351547)]$ |
167310.dq1 |
167310cs1 |
167310.dq |
167310cs |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 5^{3} \cdot 11^{9} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18289152$ |
$3.170624$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$5.10111$ |
$[1, -1, 1, -1687328, 24342619331]$ |
\(y^2+xy+y=x^3-x^2-1687328x+24342619331\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 1320.8.0.?, 17160.16.0.? |
$[ ]$ |
411840.cp1 |
411840cp1 |
411840.cp |
411840cp |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{27} \cdot 3^{3} \cdot 5^{3} \cdot 11^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$12.70119424$ |
$1$ |
|
$0$ |
$20901888$ |
$2.927868$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$4.52037$ |
$[0, 0, 0, -638988, 5672828912]$ |
\(y^2=x^3-638988x+5672828912\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 8580.8.0.?, 17160.16.0.? |
$[(-618776/19, 285467412/19)]$ |
411840.ee1 |
411840ee1 |
411840.ee |
411840ee |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{27} \cdot 3^{3} \cdot 5^{3} \cdot 11^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1.829344149$ |
$1$ |
|
$2$ |
$20901888$ |
$2.927868$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$4.52037$ |
$[0, 0, 0, -638988, -5672828912]$ |
\(y^2=x^3-638988x-5672828912\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 4290.8.0.?, 17160.16.0.? |
$[(8706, 805376)]$ |
411840.ji1 |
411840ji2 |
411840.ji |
411840ji |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{27} \cdot 3^{9} \cdot 5^{3} \cdot 11^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$0.978647463$ |
$1$ |
|
$4$ |
$62705664$ |
$3.477173$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$5.03023$ |
$[0, 0, 0, -5750892, -153166380624]$ |
\(y^2=x^3-5750892x-153166380624\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 8580.8.0.?, 17160.16.0.? |
$[(9222, 760320)]$ |
411840.li1 |
411840li2 |
411840.li |
411840li |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{27} \cdot 3^{9} \cdot 5^{3} \cdot 11^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$14.68268050$ |
$1$ |
|
$0$ |
$62705664$ |
$3.477173$ |
$-4076600308125723/1961812478912000$ |
$1.04066$ |
$5.03023$ |
$[0, 0, 0, -5750892, 153166380624]$ |
\(y^2=x^3-5750892x+153166380624\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 4290.8.0.?, 17160.16.0.? |
$[(32931093/31, 188873997615/31)]$ |