Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
25401600.bk1 |
- |
25401600.bk |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{9} \cdot 7^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$11.16617897$ |
$1$ |
|
$6$ |
$118333440$ |
$1.684801$ |
$-4032$ |
$0.43062$ |
$2.59584$ |
$[0, 0, 0, -47250, 4725000]$ |
\(y^2=x^3-47250x+4725000\) |
40.2.0.a.1 |
$[(100, 1000), (1150/3, 23750/3)]$ |
25401600.bl1 |
- |
25401600.bl |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$3.437450141$ |
$1$ |
|
$2$ |
$552222720$ |
$2.455025$ |
$-4032$ |
$0.43062$ |
$3.13792$ |
$[0, 0, 0, -1029000, 480200000]$ |
\(y^2=x^3-1029000x+480200000\) |
40.2.0.a.1 |
$[(800, 13000)]$ |
25401600.bm1 |
- |
25401600.bm |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{3} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15777792$ |
$0.677349$ |
$-4032$ |
$0.43062$ |
$1.88680$ |
$[0, 0, 0, -840, -11200]$ |
\(y^2=x^3-840x-11200\) |
40.2.0.a.1 |
$[ ]$ |
25401600.bn1 |
- |
25401600.bn |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{3} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$6.020975586$ |
$1$ |
|
$0$ |
$165666816$ |
$1.853037$ |
$-4032$ |
$0.43062$ |
$2.71424$ |
$[0, 0, 0, -92610, -12965400]$ |
\(y^2=x^3-92610x-12965400\) |
40.2.0.a.1 |
$[(3871/3, 139699/3)]$ |
25401600.bq1 |
- |
25401600.bq |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1.839690618$ |
$1$ |
|
$2$ |
$47333376$ |
$1.226654$ |
$-4032$ |
$0.43062$ |
$2.27340$ |
$[0, 0, 0, -7560, -302400]$ |
\(y^2=x^3-7560x-302400\) |
40.2.0.a.1 |
$[(120, 720)]$ |
25401600.br1 |
- |
25401600.br |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$55222272$ |
$1.303730$ |
$-4032$ |
$0.43062$ |
$2.32764$ |
$[0, 0, 0, -10290, -480200]$ |
\(y^2=x^3-10290x-480200\) |
40.2.0.a.1 |
$[ ]$ |
25401600.bs1 |
- |
25401600.bs |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$3.737305129$ |
$1$ |
|
$0$ |
$39444480$ |
$1.135494$ |
$-4032$ |
$0.43062$ |
$2.20924$ |
$[0, 0, 0, -5250, 175000]$ |
\(y^2=x^3-5250x+175000\) |
40.2.0.a.1 |
$[(550/3, 7750/3)]$ |
25401600.bt1 |
- |
25401600.bt |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{9} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1656668160$ |
$3.004330$ |
$-4032$ |
$0.43062$ |
$3.52452$ |
$[0, 0, 0, -9261000, 12965400000]$ |
\(y^2=x^3-9261000x+12965400000\) |
40.2.0.a.1 |
$[ ]$ |
25401600.by1 |
- |
25401600.by |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$276111360$ |
$2.108448$ |
$-4032$ |
$0.43062$ |
$2.89400$ |
$[0, 0, 0, -257250, -60025000]$ |
\(y^2=x^3-257250x-60025000\) |
40.2.0.a.1 |
$[ ]$ |
25401600.bz1 |
- |
25401600.bz |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$26.20007129$ |
$1$ |
|
$0$ |
$236666880$ |
$2.031372$ |
$-4032$ |
$0.43062$ |
$2.83976$ |
$[0, 0, 0, -189000, -37800000]$ |
\(y^2=x^3-189000x-37800000\) |
40.2.0.a.1 |
$[(5992952771800/77569, 12884053868108774000/77569)]$ |
25401600.ca1 |
- |
25401600.ca |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$331333632$ |
$2.199612$ |
$-4032$ |
$0.43062$ |
$2.95816$ |
$[0, 0, 0, -370440, 103723200]$ |
\(y^2=x^3-370440x+103723200\) |
40.2.0.a.1 |
$[ ]$ |
25401600.cb1 |
- |
25401600.cb |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1.939362182$ |
$1$ |
|
$2$ |
$7888896$ |
$0.330775$ |
$-4032$ |
$0.43062$ |
$1.64288$ |
$[0, 0, 0, -210, 1400]$ |
\(y^2=x^3-210x+1400\) |
40.2.0.a.1 |
$[(-10, 50)]$ |
25401600.ce1 |
- |
25401600.ce |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{3} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$0.986082612$ |
$1$ |
|
$2$ |
$110444544$ |
$1.650305$ |
$-4032$ |
$0.43062$ |
$2.57156$ |
$[0, 0, 0, -41160, 3841600]$ |
\(y^2=x^3-41160x+3841600\) |
40.2.0.a.1 |
$[(0, 1960)]$ |
25401600.cf1 |
- |
25401600.cf |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$2.429507756$ |
$1$ |
|
$8$ |
$23666688$ |
$0.880081$ |
$-4032$ |
$0.43062$ |
$2.02948$ |
$[0, 0, 0, -1890, 37800]$ |
\(y^2=x^3-1890x+37800\) |
40.2.0.a.1 |
$[(30, 90), (39, 153)]$ |
25401600.cg1 |
- |
25401600.cg |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$17.74446953$ |
$1$ |
|
$0$ |
$828334080$ |
$2.657757$ |
$-4032$ |
$0.43062$ |
$3.28060$ |
$[0, 0, 0, -2315250, -1620675000]$ |
\(y^2=x^3-2315250x-1620675000\) |
40.2.0.a.1 |
$[(219988119/7, 3262862814903/7)]$ |
25401600.ch1 |
- |
25401600.ch |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$78888960$ |
$1.482067$ |
$-4032$ |
$0.43062$ |
$2.45316$ |
$[0, 0, 0, -21000, -1400000]$ |
\(y^2=x^3-21000x-1400000\) |
40.2.0.a.1 |
$[ ]$ |
25401600.sy1 |
- |
25401600.sy |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$165666816$ |
$1.853037$ |
$-4032$ |
$0.43062$ |
$2.71424$ |
$[0, 0, 0, -92610, 12965400]$ |
\(y^2=x^3-92610x+12965400\) |
40.2.0.a.1 |
$[ ]$ |
25401600.sz1 |
- |
25401600.sz |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$2.993766180$ |
$1$ |
|
$2$ |
$15777792$ |
$0.677349$ |
$-4032$ |
$0.43062$ |
$1.88680$ |
$[0, 0, 0, -840, 11200]$ |
\(y^2=x^3-840x+11200\) |
40.2.0.a.1 |
$[(120, 1280)]$ |
25401600.ta1 |
- |
25401600.ta |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{9} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$552222720$ |
$2.455025$ |
$-4032$ |
$0.43062$ |
$3.13792$ |
$[0, 0, 0, -1029000, -480200000]$ |
\(y^2=x^3-1029000x-480200000\) |
40.2.0.a.1 |
$[ ]$ |
25401600.tb1 |
- |
25401600.tb |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$5.665592393$ |
$1$ |
|
$0$ |
$118333440$ |
$1.684801$ |
$-4032$ |
$0.43062$ |
$2.59584$ |
$[0, 0, 0, -47250, -4725000]$ |
\(y^2=x^3-47250x-4725000\) |
40.2.0.a.1 |
$[(13350/7, 555750/7)]$ |
25401600.te1 |
- |
25401600.te |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$105.3426426$ |
$1$ |
|
$0$ |
$1656668160$ |
$3.004330$ |
$-4032$ |
$0.43062$ |
$3.52452$ |
$[0, 0, 0, -9261000, -12965400000]$ |
\(y^2=x^3-9261000x-12965400000\) |
40.2.0.a.1 |
$[(153241468564675395263994337447476916397672862400/3667345584606683562447, 57535289768996032376809600861425497026194168058955677248154403044477000/3667345584606683562447)]$ |
25401600.tf1 |
- |
25401600.tf |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$39444480$ |
$1.135494$ |
$-4032$ |
$0.43062$ |
$2.20924$ |
$[0, 0, 0, -5250, -175000]$ |
\(y^2=x^3-5250x-175000\) |
40.2.0.a.1 |
$[ ]$ |
25401600.tg1 |
- |
25401600.tg |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{3} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$2.362598018$ |
$1$ |
|
$2$ |
$55222272$ |
$1.303730$ |
$-4032$ |
$0.43062$ |
$2.32764$ |
$[0, 0, 0, -10290, 480200]$ |
\(y^2=x^3-10290x+480200\) |
40.2.0.a.1 |
$[(-49, 931)]$ |
25401600.th1 |
- |
25401600.th |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$47333376$ |
$1.226654$ |
$-4032$ |
$0.43062$ |
$2.27340$ |
$[0, 0, 0, -7560, 302400]$ |
\(y^2=x^3-7560x+302400\) |
40.2.0.a.1 |
$[ ]$ |
25401600.tm1 |
- |
25401600.tm |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{3} \cdot 7^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$17.08420154$ |
$1$ |
|
$4$ |
$7888896$ |
$0.330775$ |
$-4032$ |
$0.43062$ |
$1.64288$ |
$[0, 0, 0, -210, -1400]$ |
\(y^2=x^3-210x-1400\) |
40.2.0.a.1 |
$[(39, 223), (270, 4430)]$ |
25401600.tn1 |
- |
25401600.tn |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$4.878503045$ |
$1$ |
|
$0$ |
$331333632$ |
$2.199612$ |
$-4032$ |
$0.43062$ |
$2.95816$ |
$[0, 0, 0, -370440, -103723200]$ |
\(y^2=x^3-370440x-103723200\) |
40.2.0.a.1 |
$[(7840/3, 413560/3)]$ |
25401600.to1 |
- |
25401600.to |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$236666880$ |
$2.031372$ |
$-4032$ |
$0.43062$ |
$2.83976$ |
$[0, 0, 0, -189000, 37800000]$ |
\(y^2=x^3-189000x+37800000\) |
40.2.0.a.1 |
$[ ]$ |
25401600.tp1 |
- |
25401600.tp |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$18.96655889$ |
$1$ |
|
$0$ |
$276111360$ |
$2.108448$ |
$-4032$ |
$0.43062$ |
$2.89400$ |
$[0, 0, 0, -257250, 60025000]$ |
\(y^2=x^3-257250x+60025000\) |
40.2.0.a.1 |
$[(130031239/621, 816343391737/621)]$ |
25401600.ts1 |
- |
25401600.ts |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$8.138821455$ |
$1$ |
|
$0$ |
$78888960$ |
$1.482067$ |
$-4032$ |
$0.43062$ |
$2.45316$ |
$[0, 0, 0, -21000, 1400000]$ |
\(y^2=x^3-21000x+1400000\) |
40.2.0.a.1 |
$[(49400/29, 14818000/29)]$ |
25401600.tt1 |
- |
25401600.tt |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{9} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$828334080$ |
$2.657757$ |
$-4032$ |
$0.43062$ |
$3.28060$ |
$[0, 0, 0, -2315250, 1620675000]$ |
\(y^2=x^3-2315250x+1620675000\) |
40.2.0.a.1 |
$[ ]$ |
25401600.tu1 |
- |
25401600.tu |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$13.48096345$ |
$1$ |
|
$0$ |
$23666688$ |
$0.880081$ |
$-4032$ |
$0.43062$ |
$2.02948$ |
$[0, 0, 0, -1890, -37800]$ |
\(y^2=x^3-1890x-37800\) |
40.2.0.a.1 |
$[(1744870/141, 1926622970/141)]$ |
25401600.tv1 |
- |
25401600.tv |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$110444544$ |
$1.650305$ |
$-4032$ |
$0.43062$ |
$2.57156$ |
$[0, 0, 0, -41160, -3841600]$ |
\(y^2=x^3-41160x-3841600\) |
40.2.0.a.1 |
$[ ]$ |