Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5586.v1 |
5586t1 |
5586.v |
5586t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{8} \cdot 7^{4} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.133378786$ |
$1$ |
|
$10$ |
$56448$ |
$1.926746$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$5.86264$ |
$[1, 1, 1, -437865, 111357399]$ |
\(y^2+xy+y=x^3+x^2-437865x+111357399\) |
38.2.0.a.1 |
$[(703, 11960)]$ |
5586.ba1 |
5586y1 |
5586.ba |
5586y |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{8} \cdot 7^{10} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$395136$ |
$2.899700$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$7.21584$ |
$[1, 0, 0, -21455386, -38259954076]$ |
\(y^2+xy=x^3-21455386x-38259954076\) |
38.2.0.a.1 |
$[ ]$ |
16758.e1 |
16758e1 |
16758.e |
16758e |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{14} \cdot 7^{4} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$4.654119064$ |
$1$ |
|
$2$ |
$451584$ |
$2.476051$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$5.87815$ |
$[1, -1, 0, -3940785, -3010590563]$ |
\(y^2+xy=x^3-x^2-3940785x-3010590563\) |
38.2.0.a.1 |
$[(7314, 595831)]$ |
16758.j1 |
16758h1 |
16758.j |
16758h |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{14} \cdot 7^{10} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$10.81733141$ |
$1$ |
|
$0$ |
$3161088$ |
$3.449009$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$7.07851$ |
$[1, -1, 0, -193098474, 1033018760052]$ |
\(y^2+xy=x^3-x^2-193098474x+1033018760052\) |
38.2.0.a.1 |
$[(-13628/7, 357608082/7)]$ |
44688.l1 |
44688ck1 |
44688.l |
44688ck |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{8} \cdot 7^{10} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9483264$ |
$3.592850$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$6.59131$ |
$[0, -1, 0, -343286176, 2448637060864]$ |
\(y^2=x^3-x^2-343286176x+2448637060864\) |
38.2.0.a.1 |
$[ ]$ |
44688.df1 |
44688co1 |
44688.df |
44688co |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{8} \cdot 7^{4} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.733592983$ |
$1$ |
|
$2$ |
$1354752$ |
$2.619896$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$5.50090$ |
$[0, 1, 0, -7005840, -7140885228]$ |
\(y^2=x^3+x^2-7005840x-7140885228\) |
38.2.0.a.1 |
$[(5826, 387072)]$ |
106134.i1 |
106134l1 |
106134.i |
106134l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 3^{8} \cdot 7^{10} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$3.062206913$ |
$1$ |
|
$2$ |
$142248960$ |
$4.371925$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$6.90649$ |
$[1, 1, 0, -7745394353, 262409534218581]$ |
\(y^2+xy=x^3+x^2-7745394353x+262409534218581\) |
38.2.0.a.1 |
$[(68930, 7451231)]$ |
106134.bb1 |
106134t1 |
106134.bb |
106134t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 3^{8} \cdot 7^{4} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$10.60837977$ |
$1$ |
|
$0$ |
$20321280$ |
$3.398968$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$5.89759$ |
$[1, 0, 1, -158069273, -765064955140]$ |
\(y^2+xy+y=x^3-158069273x-765064955140\) |
38.2.0.a.1 |
$[(74459979/23, 639004155422/23)]$ |
134064.cc1 |
134064bb1 |
134064.cc |
134064bb |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{14} \cdot 7^{4} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.468079730$ |
$1$ |
|
$4$ |
$10838016$ |
$3.169201$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$5.54735$ |
$[0, 0, 0, -63052563, 192740848594]$ |
\(y^2=x^3-63052563x+192740848594\) |
38.2.0.a.1 |
$[(4025, 64512)]$ |
134064.ef1 |
134064by1 |
134064.ef |
134064by |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{26} \cdot 3^{14} \cdot 7^{10} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$35.60544106$ |
$1$ |
|
$0$ |
$75866112$ |
$4.142159$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$6.53628$ |
$[0, 0, 0, -3089575587, -66110111067742]$ |
\(y^2=x^3-3089575587x-66110111067742\) |
38.2.0.a.1 |
$[(2752975386321973873/1320001, 4564896486369023638775098368/1320001)]$ |
139650.ba1 |
139650iz1 |
139650.ba |
139650iz |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{8} \cdot 5^{6} \cdot 7^{10} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$55319040$ |
$3.704422$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$6.07037$ |
$[1, 1, 0, -536384650, -4782494259500]$ |
\(y^2+xy=x^3+x^2-536384650x-4782494259500\) |
38.2.0.a.1 |
$[ ]$ |
139650.dm1 |
139650hi1 |
139650.dm |
139650hi |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{8} \cdot 5^{6} \cdot 7^{4} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.240133533$ |
$1$ |
|
$8$ |
$7902720$ |
$2.731464$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$5.08484$ |
$[1, 0, 1, -10946626, 13941568148]$ |
\(y^2+xy+y=x^3-10946626x+13941568148\) |
38.2.0.a.1 |
$[(781, 76217)]$ |
178752.bv1 |
178752dw1 |
178752.bv |
178752dw |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{32} \cdot 3^{8} \cdot 7^{4} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$4.611209270$ |
$1$ |
|
$2$ |
$10838016$ |
$2.966469$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$5.21423$ |
$[0, -1, 0, -28023361, -57099058463]$ |
\(y^2=x^3-x^2-28023361x-57099058463\) |
38.2.0.a.1 |
$[(20536, 2833299)]$ |
178752.dn1 |
178752jx1 |
178752.dn |
178752jx |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{32} \cdot 3^{8} \cdot 7^{10} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$36.89300583$ |
$1$ |
|
$0$ |
$75866112$ |
$3.939423$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$6.17964$ |
$[0, -1, 0, -1373144705, -19587723342207]$ |
\(y^2=x^3-x^2-1373144705x-19587723342207\) |
38.2.0.a.1 |
$[(474799635571206536/3057455, 184555087210586041144995141/3057455)]$ |
178752.hf1 |
178752gl1 |
178752.hf |
178752gl |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{32} \cdot 3^{8} \cdot 7^{4} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10838016$ |
$2.966469$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$5.21423$ |
$[0, 1, 0, -28023361, 57099058463]$ |
\(y^2=x^3+x^2-28023361x+57099058463\) |
38.2.0.a.1 |
$[ ]$ |
178752.ir1 |
178752by1 |
178752.ir |
178752by |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{32} \cdot 3^{8} \cdot 7^{10} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$75866112$ |
$3.939423$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$6.17964$ |
$[0, 1, 0, -1373144705, 19587723342207]$ |
\(y^2=x^3+x^2-1373144705x+19587723342207\) |
38.2.0.a.1 |
$[ ]$ |
318402.dl1 |
318402dl1 |
318402.dl |
318402dl |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 3^{14} \cdot 7^{4} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$162570240$ |
$3.948273$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$5.90647$ |
$[1, -1, 1, -1422623453, 20656753788773]$ |
\(y^2+xy+y=x^3-x^2-1422623453x+20656753788773\) |
38.2.0.a.1 |
$[ ]$ |
318402.dz1 |
318402dz1 |
318402.dz |
318402dz |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 3^{14} \cdot 7^{10} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$25.33432708$ |
$1$ |
|
$0$ |
$1137991680$ |
$4.921227$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$6.82789$ |
$[1, -1, 1, -69708549182, -7085127132450867]$ |
\(y^2+xy+y=x^3-x^2-69708549182x-7085127132450867\) |
38.2.0.a.1 |
$[(99183797753183/937, 987732811343282782149/937)]$ |
418950.nj1 |
418950nj1 |
418950.nj |
418950nj |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{14} \cdot 5^{6} \cdot 7^{10} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$442552320$ |
$4.253731$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$6.06440$ |
$[1, -1, 1, -4827461855, 129122517544647]$ |
\(y^2+xy+y=x^3-x^2-4827461855x+129122517544647\) |
38.2.0.a.1 |
$[ ]$ |
418950.nq1 |
418950nq1 |
418950.nq |
418950nq |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{14} \cdot 5^{6} \cdot 7^{4} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$63221760$ |
$3.280773$ |
$-3866805342966045361/737311113216$ |
$1.04259$ |
$5.16250$ |
$[1, -1, 1, -98519630, -376422340003]$ |
\(y^2+xy+y=x^3-x^2-98519630x-376422340003\) |
38.2.0.a.1 |
$[ ]$ |