Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2856.a1 |
2856e1 |
2856.a |
2856e |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 7^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.357872302$ |
$1$ |
|
$6$ |
$5376$ |
$1.365669$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.78124$ |
$[0, -1, 0, -95121, 11323557]$ |
\(y^2=x^3-x^2-95121x+11323557\) |
102.2.0.? |
$[(179, 14)]$ |
5712.r1 |
5712i1 |
5712.r |
5712i |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 7^{4} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10752$ |
$1.365669$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.31799$ |
$[0, 1, 0, -95121, -11323557]$ |
\(y^2=x^3+x^2-95121x-11323557\) |
102.2.0.? |
$[ ]$ |
8568.h1 |
8568f1 |
8568.h |
8568f |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{8} \cdot 3^{13} \cdot 7^{4} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$43008$ |
$1.914976$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.80778$ |
$[0, 0, 0, -856092, -304879948]$ |
\(y^2=x^3-856092x-304879948\) |
102.2.0.? |
$[ ]$ |
17136.z1 |
17136f1 |
17136.z |
17136f |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{8} \cdot 3^{13} \cdot 7^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1.120067935$ |
$1$ |
|
$2$ |
$86016$ |
$1.914976$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.39484$ |
$[0, 0, 0, -856092, 304879948]$ |
\(y^2=x^3-856092x+304879948\) |
102.2.0.? |
$[(809, 11907)]$ |
19992.x1 |
19992z1 |
19992.x |
19992z |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 7^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$4.648196003$ |
$1$ |
|
$2$ |
$258048$ |
$2.338623$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.82422$ |
$[0, 1, 0, -4660945, -3874658173]$ |
\(y^2=x^3+x^2-4660945x-3874658173\) |
102.2.0.? |
$[(2501, 10878)]$ |
22848.v1 |
22848bq1 |
22848.v |
22848bq |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17 \) |
\( - 2^{14} \cdot 3^{7} \cdot 7^{4} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$86016$ |
$1.712244$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$4.99782$ |
$[0, -1, 0, -380485, -90207971]$ |
\(y^2=x^3-x^2-380485x-90207971\) |
102.2.0.? |
$[ ]$ |
22848.ck1 |
22848be1 |
22848.ck |
22848be |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17 \) |
\( - 2^{14} \cdot 3^{7} \cdot 7^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.381265695$ |
$1$ |
|
$4$ |
$86016$ |
$1.712244$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$4.99782$ |
$[0, 1, 0, -380485, 90207971]$ |
\(y^2=x^3+x^2-380485x+90207971\) |
102.2.0.? |
$[(350, 189)]$ |
39984.bg1 |
39984h1 |
39984.bg |
39984h |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 7^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$7.742211928$ |
$1$ |
|
$0$ |
$516096$ |
$2.338623$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.44323$ |
$[0, -1, 0, -4660945, 3874658173]$ |
\(y^2=x^3-x^2-4660945x+3874658173\) |
102.2.0.? |
$[(209676/13, 821387/13)]$ |
48552.y1 |
48552bb1 |
48552.y |
48552bb |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{7} \cdot 7^{4} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.310138039$ |
$1$ |
|
$4$ |
$1548288$ |
$2.782276$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.83868$ |
$[0, 1, 0, -27490065, 55467695331]$ |
\(y^2=x^3+x^2-27490065x+55467695331\) |
102.2.0.? |
$[(2085, 84966)]$ |
59976.t1 |
59976k1 |
59976.t |
59976k |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{13} \cdot 7^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.847803366$ |
$1$ |
|
$4$ |
$2064384$ |
$2.887932$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.84178$ |
$[0, 0, 0, -41948508, 104573822164]$ |
\(y^2=x^3-41948508x+104573822164\) |
102.2.0.? |
$[(3962, 23814)]$ |
68544.bx1 |
68544dx1 |
68544.bx |
68544dx |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{14} \cdot 3^{13} \cdot 7^{4} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$688128$ |
$2.261551$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.09670$ |
$[0, 0, 0, -3424368, 2439039584]$ |
\(y^2=x^3-3424368x+2439039584\) |
102.2.0.? |
$[ ]$ |
68544.cf1 |
68544ci1 |
68544.cf |
68544ci |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{14} \cdot 3^{13} \cdot 7^{4} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$688128$ |
$2.261551$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.09670$ |
$[0, 0, 0, -3424368, -2439039584]$ |
\(y^2=x^3-3424368x-2439039584\) |
102.2.0.? |
$[ ]$ |
71400.cv1 |
71400bg1 |
71400.cv |
71400bg |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.327830363$ |
$1$ |
|
$8$ |
$752640$ |
$2.170387$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$4.98020$ |
$[0, 1, 0, -2378033, 1410688563]$ |
\(y^2=x^3+x^2-2378033x+1410688563\) |
102.2.0.? |
$[(907, 882)]$ |
97104.ba1 |
97104d1 |
97104.ba |
97104d |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{7} \cdot 7^{4} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3096576$ |
$2.782276$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.48625$ |
$[0, -1, 0, -27490065, -55467695331]$ |
\(y^2=x^3-x^2-27490065x-55467695331\) |
102.2.0.? |
$[ ]$ |
119952.cq1 |
119952v1 |
119952.cq |
119952v |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{13} \cdot 7^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$52.95029732$ |
$1$ |
|
$0$ |
$4128768$ |
$2.887932$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.49554$ |
$[0, 0, 0, -41948508, -104573822164]$ |
\(y^2=x^3-41948508x-104573822164\) |
102.2.0.? |
$[(1689126094013149829314081/10235108299, 1980282520740839137649379931445646327/10235108299)]$ |
142800.dv1 |
142800io1 |
142800.dv |
142800io |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$25.49916531$ |
$1$ |
|
$0$ |
$1505280$ |
$2.170387$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$4.68936$ |
$[0, -1, 0, -2378033, -1410688563]$ |
\(y^2=x^3-x^2-2378033x-1410688563\) |
102.2.0.? |
$[(441031315924/8833, 280561591389252691/8833)]$ |
145656.n1 |
145656bd1 |
145656.n |
145656bd |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{13} \cdot 7^{4} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12386304$ |
$3.331581$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.85358$ |
$[0, 0, 0, -247410588, -1497875184524]$ |
\(y^2=x^3-247410588x-1497875184524\) |
102.2.0.? |
$[ ]$ |
159936.ce1 |
159936ix1 |
159936.ce |
159936ix |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{14} \cdot 3^{7} \cdot 7^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$75.39289321$ |
$1$ |
|
$0$ |
$4128768$ |
$2.685200$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.16057$ |
$[0, -1, 0, -18643781, -30978621603]$ |
\(y^2=x^3-x^2-18643781x-30978621603\) |
102.2.0.? |
$[(3800122924018879085339299071868564/168546681632111, 234134638553126889083795508293906013933762202264451/168546681632111)]$ |
159936.hi1 |
159936u1 |
159936.hi |
159936u |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{14} \cdot 3^{7} \cdot 7^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1.947753981$ |
$1$ |
|
$2$ |
$4128768$ |
$2.685200$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.16057$ |
$[0, 1, 0, -18643781, 30978621603]$ |
\(y^2=x^3+x^2-18643781x+30978621603\) |
102.2.0.? |
$[(2494, 147)]$ |
214200.bi1 |
214200bw1 |
214200.bi |
214200bw |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{8} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$12.91027571$ |
$1$ |
|
$0$ |
$6021120$ |
$2.719696$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.07147$ |
$[0, 0, 0, -21402300, -38109993500]$ |
\(y^2=x^3-21402300x-38109993500\) |
102.2.0.? |
$[(84430544/109, 531861233022/109)]$ |
291312.cm1 |
291312cm1 |
291312.cm |
291312cm |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{13} \cdot 7^{4} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$2.881974183$ |
$1$ |
|
$2$ |
$24772608$ |
$3.331581$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.53111$ |
$[0, 0, 0, -247410588, 1497875184524]$ |
\(y^2=x^3-247410588x+1497875184524\) |
102.2.0.? |
$[(10897, 309519)]$ |
339864.p1 |
339864p1 |
339864.p |
339864p |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{7} \cdot 7^{10} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$52.54768996$ |
$1$ |
|
$0$ |
$74317824$ |
$3.755230$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.86332$ |
$[0, -1, 0, -1347013201, -19028113524923]$ |
\(y^2=x^3-x^2-1347013201x-19028113524923\) |
102.2.0.? |
$[(15717769687903277624995011/1524072589, 62313184683710311202903001171973857994/1524072589)]$ |
345576.j1 |
345576j1 |
345576.j |
345576j |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 11^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 7^{4} \cdot 11^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$12.43086741$ |
$1$ |
|
$0$ |
$7687680$ |
$2.564617$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$4.73534$ |
$[0, -1, 0, -11509681, -15025615691]$ |
\(y^2=x^3-x^2-11509681x-15025615691\) |
102.2.0.? |
$[(3838137/13, 7429940266/13)]$ |
388416.bn1 |
388416bn1 |
388416.bn |
388416bn |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{14} \cdot 3^{7} \cdot 7^{4} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$3.786643470$ |
$1$ |
|
$0$ |
$24772608$ |
$3.128849$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.21844$ |
$[0, -1, 0, -109960261, 443851522909]$ |
\(y^2=x^3-x^2-109960261x+443851522909\) |
102.2.0.? |
$[(51700/3, 1118719/3)]$ |
388416.fz1 |
388416fz1 |
388416.fz |
388416fz |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{14} \cdot 3^{7} \cdot 7^{4} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$24772608$ |
$3.128849$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.21844$ |
$[0, 1, 0, -109960261, -443851522909]$ |
\(y^2=x^3+x^2-109960261x-443851522909\) |
102.2.0.? |
$[ ]$ |
428400.kk1 |
428400kk1 |
428400.kk |
428400kk |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{8} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$3.954548151$ |
$1$ |
|
$2$ |
$12042240$ |
$2.719696$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$4.80040$ |
$[0, 0, 0, -21402300, 38109993500]$ |
\(y^2=x^3-21402300x+38109993500\) |
102.2.0.? |
$[(2449, 19593)]$ |
479808.ld1 |
479808ld1 |
479808.ld |
479808ld |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{14} \cdot 3^{13} \cdot 7^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$15.15092613$ |
$1$ |
|
$0$ |
$33030144$ |
$3.234505$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.23107$ |
$[0, 0, 0, -167794032, 836590577312]$ |
\(y^2=x^3-167794032x+836590577312\) |
102.2.0.? |
$[(1631639233/467, 60241630617/467)]$ |
479808.lq1 |
479808lq1 |
479808.lq |
479808lq |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{14} \cdot 3^{13} \cdot 7^{10} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$33030144$ |
$3.234505$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.23107$ |
$[0, 0, 0, -167794032, -836590577312]$ |
\(y^2=x^3-167794032x-836590577312\) |
102.2.0.? |
$[ ]$ |
482664.s1 |
482664s1 |
482664.s |
482664s |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 7^{4} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$2.744691103$ |
$1$ |
|
$2$ |
$12579840$ |
$2.648144$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$4.69104$ |
$[0, -1, 0, -16075505, 24813552789]$ |
\(y^2=x^3-x^2-16075505x+24813552789\) |
102.2.0.? |
$[(2281, 2842)]$ |
499800.by1 |
499800by1 |
499800.by |
499800by |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7^{10} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$36126720$ |
$3.143345$ |
$-371806976516936704/89266779$ |
$1.01123$ |
$5.13143$ |
$[0, -1, 0, -116523633, -484099224363]$ |
\(y^2=x^3-x^2-116523633x-484099224363\) |
102.2.0.? |
$[ ]$ |