| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 1092.b1 |
1092b1 |
1092.b |
1092b |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{3} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.098699696$ |
$1$ |
|
$10$ |
$1440$ |
$1.070187$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$5.17878$ |
$[0, -1, 0, -1981, 85897]$ |
\(y^2=x^3-x^2-1981x+85897\) |
182.2.0.? |
$[(19, 234)]$ |
| 3276.g1 |
3276g1 |
3276.g |
3276g |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 3^{10} \cdot 7^{3} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$1.619492$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$5.29024$ |
$[0, 0, 0, -17832, -2301388]$ |
\(y^2=x^3-17832x-2301388\) |
182.2.0.? |
$[ ]$ |
| 4368.r1 |
4368ba1 |
4368.r |
4368ba |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{3} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.105797529$ |
$1$ |
|
$10$ |
$5760$ |
$1.070187$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.32227$ |
$[0, 1, 0, -1981, -85897]$ |
\(y^2=x^3+x^2-1981x-85897\) |
182.2.0.? |
$[(371, 7098)]$ |
| 7644.i1 |
7644e1 |
7644.i |
7644e |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{9} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$69120$ |
$2.043140$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$5.35749$ |
$[0, 1, 0, -97085, -29268513]$ |
\(y^2=x^3+x^2-97085x-29268513\) |
182.2.0.? |
$[ ]$ |
| 13104.bt1 |
13104ci1 |
13104.bt |
13104ci |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 3^{10} \cdot 7^{3} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.224328623$ |
$1$ |
|
$6$ |
$46080$ |
$1.619492$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.51668$ |
$[0, 0, 0, -17832, 2301388]$ |
\(y^2=x^3-17832x+2301388\) |
182.2.0.? |
$[(-22, 1638)]$ |
| 14196.e1 |
14196e1 |
14196.e |
14196e |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{3} \cdot 13^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1.787753753$ |
$1$ |
|
$2$ |
$241920$ |
$2.352661$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$5.39910$ |
$[0, -1, 0, -334845, 187376409]$ |
\(y^2=x^3-x^2-334845x+187376409\) |
182.2.0.? |
$[(360, 10647)]$ |
| 17472.bc1 |
17472cc1 |
17472.bc |
17472cc |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 13 \) |
\( - 2^{14} \cdot 3^{4} \cdot 7^{3} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$3.383187389$ |
$1$ |
|
$2$ |
$46080$ |
$1.416759$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.13462$ |
$[0, -1, 0, -7925, -679251]$ |
\(y^2=x^3-x^2-7925x-679251\) |
182.2.0.? |
$[(260, 3843)]$ |
| 17472.cl1 |
17472v1 |
17472.cl |
17472v |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 13 \) |
\( - 2^{14} \cdot 3^{4} \cdot 7^{3} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$46080$ |
$1.416759$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.13462$ |
$[0, 1, 0, -7925, 679251]$ |
\(y^2=x^3+x^2-7925x+679251\) |
182.2.0.? |
$[ ]$ |
| 22932.k1 |
22932o1 |
22932.k |
22932o |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{8} \cdot 3^{10} \cdot 7^{9} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$552960$ |
$2.592449$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$5.42780$ |
$[0, 0, 0, -873768, 789376084]$ |
\(y^2=x^3-873768x+789376084\) |
182.2.0.? |
$[ ]$ |
| 27300.w1 |
27300r1 |
27300.w |
27300r |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{6} \cdot 7^{3} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$201600$ |
$1.874905$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.49219$ |
$[0, 1, 0, -49533, 10638063]$ |
\(y^2=x^3+x^2-49533x+10638063\) |
182.2.0.? |
$[ ]$ |
| 30576.y1 |
30576bq1 |
30576.y |
30576bq |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{9} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1.155450525$ |
$1$ |
|
$4$ |
$276480$ |
$2.043140$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.63837$ |
$[0, -1, 0, -97085, 29268513]$ |
\(y^2=x^3-x^2-97085x+29268513\) |
182.2.0.? |
$[(-247, 6174)]$ |
| 42588.k1 |
42588s1 |
42588.k |
42588s |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{10} \cdot 7^{3} \cdot 13^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1935360$ |
$2.901966$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$5.46103$ |
$[0, 0, 0, -3013608, -5056149436]$ |
\(y^2=x^3-3013608x-5056149436\) |
182.2.0.? |
$[ ]$ |
| 52416.ci1 |
52416bo1 |
52416.ci |
52416bo |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{14} \cdot 3^{10} \cdot 7^{3} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$368640$ |
$1.966066$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.32320$ |
$[0, 0, 0, -71328, -18411104]$ |
\(y^2=x^3-71328x-18411104\) |
182.2.0.? |
$[ ]$ |
| 52416.cm1 |
52416fw1 |
52416.cm |
52416fw |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{14} \cdot 3^{10} \cdot 7^{3} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$368640$ |
$1.966066$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.32320$ |
$[0, 0, 0, -71328, 18411104]$ |
\(y^2=x^3-71328x+18411104\) |
182.2.0.? |
$[ ]$ |
| 56784.co1 |
56784cm1 |
56784.co |
56784cm |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{3} \cdot 13^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$5.724410211$ |
$1$ |
|
$2$ |
$967680$ |
$2.352661$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.71537$ |
$[0, 1, 0, -334845, -187376409]$ |
\(y^2=x^3+x^2-334845x-187376409\) |
182.2.0.? |
$[(975, 20346)]$ |
| 81900.ba1 |
81900v1 |
81900.ba |
81900v |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5^{6} \cdot 7^{3} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1612800$ |
$2.424210$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.63861$ |
$[0, 0, 0, -445800, -287673500]$ |
\(y^2=x^3-445800x-287673500\) |
182.2.0.? |
$[ ]$ |
| 91728.cn1 |
91728dz1 |
91728.cn |
91728dz |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{8} \cdot 3^{10} \cdot 7^{9} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2211840$ |
$2.592449$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.76929$ |
$[0, 0, 0, -873768, -789376084]$ |
\(y^2=x^3-873768x-789376084\) |
182.2.0.? |
$[ ]$ |
| 99372.bl1 |
99372bk1 |
99372.bl |
99372bk |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{9} \cdot 13^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11612160$ |
$3.325615$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$5.50072$ |
$[0, 1, 0, -16407421, -64237293457]$ |
\(y^2=x^3+x^2-16407421x-64237293457\) |
182.2.0.? |
$[ ]$ |
| 109200.k1 |
109200cw1 |
109200.k |
109200cw |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{6} \cdot 7^{3} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$806400$ |
$1.874905$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$3.95538$ |
$[0, -1, 0, -49533, -10638063]$ |
\(y^2=x^3-x^2-49533x-10638063\) |
182.2.0.? |
$[ ]$ |
| 122304.bl1 |
122304bv1 |
122304.bl |
122304bv |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{4} \cdot 7^{9} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$2.782180892$ |
$1$ |
|
$2$ |
$2211840$ |
$2.389713$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.44448$ |
$[0, -1, 0, -388341, -233759763]$ |
\(y^2=x^3-x^2-388341x-233759763\) |
182.2.0.? |
$[(2196, 97461)]$ |
| 122304.gg1 |
122304ia1 |
122304.gg |
122304ia |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{4} \cdot 7^{9} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.599547383$ |
$1$ |
|
$2$ |
$2211840$ |
$2.389713$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.44448$ |
$[0, 1, 0, -388341, 233759763]$ |
\(y^2=x^3+x^2-388341x+233759763\) |
182.2.0.? |
$[(534, 13377)]$ |
| 132132.k1 |
132132be1 |
132132.k |
132132be |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 11^{2} \cdot 13 \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{3} \cdot 11^{6} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2016000$ |
$2.269135$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.29264$ |
$[0, -1, 0, -239741, -113369991]$ |
\(y^2=x^3-x^2-239741x-113369991\) |
182.2.0.? |
$[ ]$ |
| 170352.ca1 |
170352be1 |
170352.ca |
170352be |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{10} \cdot 7^{3} \cdot 13^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$6.366888628$ |
$1$ |
|
$2$ |
$7741440$ |
$2.901966$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.83253$ |
$[0, 0, 0, -3013608, 5056149436]$ |
\(y^2=x^3-3013608x+5056149436\) |
182.2.0.? |
$[(-2122, 43542)]$ |
| 191100.bb1 |
191100cl1 |
191100.bb |
191100cl |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{6} \cdot 7^{9} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9676800$ |
$2.847862$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.73347$ |
$[0, -1, 0, -2427133, -3653709863]$ |
\(y^2=x^3-x^2-2427133x-3653709863\) |
182.2.0.? |
$[ ]$ |
| 227136.bp1 |
227136df1 |
227136.bp |
227136df |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{14} \cdot 3^{4} \cdot 7^{3} \cdot 13^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7741440$ |
$2.699234$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.52256$ |
$[0, -1, 0, -1339381, -1497671891]$ |
\(y^2=x^3-x^2-1339381x-1497671891\) |
182.2.0.? |
$[ ]$ |
| 227136.gu1 |
227136fp1 |
227136.gu |
227136fp |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{14} \cdot 3^{4} \cdot 7^{3} \cdot 13^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1.323055888$ |
$1$ |
|
$0$ |
$7741440$ |
$2.699234$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.52256$ |
$[0, 1, 0, -1339381, 1497671891]$ |
\(y^2=x^3+x^2-1339381x+1497671891\) |
182.2.0.? |
$[(7517/2, 599781/2)]$ |
| 298116.cp1 |
298116cp1 |
298116.cp |
298116cp |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{10} \cdot 7^{9} \cdot 13^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$92897280$ |
$3.874924$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$5.54423$ |
$[0, 0, 0, -147666792, 1734259256548]$ |
\(y^2=x^3-147666792x+1734259256548\) |
182.2.0.? |
$[ ]$ |
| 315588.bh1 |
315588bh1 |
315588.bh |
315588bh |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{3} \cdot 13^{5} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.186635356$ |
$1$ |
|
$6$ |
$7096320$ |
$2.486794$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.20376$ |
$[0, 1, 0, -572605, 418576511]$ |
\(y^2=x^3+x^2-572605x+418576511\) |
182.2.0.? |
$[(2969, 157794)]$ |
| 327600.ep1 |
327600ep1 |
327600.ep |
327600ep |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5^{6} \cdot 7^{3} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$10.13347941$ |
$1$ |
|
$2$ |
$6451200$ |
$2.424210$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.13226$ |
$[0, 0, 0, -445800, 287673500]$ |
\(y^2=x^3-445800x+287673500\) |
182.2.0.? |
$[(150694, 58497822)]$ |
| 354900.ch1 |
354900ch1 |
354900.ch |
354900ch |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{6} \cdot 7^{3} \cdot 13^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$2.213688635$ |
$1$ |
|
$2$ |
$33868800$ |
$3.157379$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.79482$ |
$[0, 1, 0, -8371133, 23405308863]$ |
\(y^2=x^3+x^2-8371133x+23405308863\) |
182.2.0.? |
$[(15409, 1885026)]$ |
| 366912.kf1 |
366912kf1 |
366912.kf |
366912kf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{10} \cdot 7^{9} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$3.760284551$ |
$1$ |
|
$2$ |
$17694720$ |
$2.939022$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.57786$ |
$[0, 0, 0, -3495072, -6315008672]$ |
\(y^2=x^3-3495072x-6315008672\) |
182.2.0.? |
$[(2513, 27783)]$ |
| 366912.lf1 |
366912lf1 |
366912.lf |
366912lf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{10} \cdot 7^{9} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17694720$ |
$2.939022$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.57786$ |
$[0, 0, 0, -3495072, 6315008672]$ |
\(y^2=x^3-3495072x+6315008672\) |
182.2.0.? |
$[ ]$ |
| 394212.bb1 |
394212bb1 |
394212.bb |
394212bb |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{3} \cdot 13^{5} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10342080$ |
$2.542404$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.18298$ |
$[0, 1, 0, -715261, -584876209]$ |
\(y^2=x^3+x^2-715261x-584876209\) |
182.2.0.? |
$[ ]$ |
| 396396.br1 |
396396br1 |
396396.br |
396396br |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 13 \) |
\( - 2^{8} \cdot 3^{10} \cdot 7^{3} \cdot 11^{6} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1.995787748$ |
$1$ |
|
$2$ |
$16128000$ |
$2.818439$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.43815$ |
$[0, 0, 0, -2157672, 3063147428]$ |
\(y^2=x^3-2157672x+3063147428\) |
182.2.0.? |
$[(1144, 45738)]$ |
| 397488.ce1 |
397488ce1 |
397488.ce |
397488ce |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{9} \cdot 13^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$2.948045636$ |
$1$ |
|
$2$ |
$46448640$ |
$3.325615$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$4.90926$ |
$[0, -1, 0, -16407421, 64237293457]$ |
\(y^2=x^3-x^2-16407421x+64237293457\) |
182.2.0.? |
$[(10149, 971074)]$ |
| 436800.hb1 |
436800hb1 |
436800.hb |
436800hb |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{14} \cdot 3^{4} \cdot 5^{6} \cdot 7^{3} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1.141240634$ |
$1$ |
|
$2$ |
$6451200$ |
$2.221478$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$3.85340$ |
$[0, -1, 0, -198133, 85302637]$ |
\(y^2=x^3-x^2-198133x+85302637\) |
182.2.0.? |
$[(-164, 10647)]$ |
| 436800.nw1 |
436800nw1 |
436800.nw |
436800nw |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{14} \cdot 3^{4} \cdot 5^{6} \cdot 7^{3} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6451200$ |
$2.221478$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$3.85340$ |
$[0, 1, 0, -198133, -85302637]$ |
\(y^2=x^3+x^2-198133x-85302637\) |
182.2.0.? |
$[ ]$ |