Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
244608.e1 |
244608e1 |
244608.e |
244608e |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{31} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$41.80431002$ |
$1$ |
|
$0$ |
$353310720$ |
$4.368591$ |
$-316880045595872672/1357028451635831559$ |
$1.13004$ |
$6.10367$ |
$[0, -1, 0, -98208217, -32226835018391]$ |
\(y^2=x^3-x^2-98208217x-32226835018391\) |
2184.2.0.? |
$[(33224900335030667927/29387507, 116119456768629214675362480312/29387507)]$ |
244608.l1 |
244608l1 |
244608.l |
244608l |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{31} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$30.04586765$ |
$1$ |
|
$0$ |
$25236480$ |
$3.049065$ |
$-316880045595872672/1357028451635831559$ |
$1.13004$ |
$4.82747$ |
$[0, -1, 0, -501062, 11744652354]$ |
\(y^2=x^3-x^2-501062x+11744652354\) |
2184.2.0.? |
$[(20674872512293/72014, 100969086880545606821/72014)]$ |
244608.cr1 |
244608cr1 |
244608.cr |
244608cr |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{31} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$37.80352156$ |
$1$ |
|
$0$ |
$176655360$ |
$4.022018$ |
$-316880045595872672/1357028451635831559$ |
$1.13004$ |
$5.76848$ |
$[0, -1, 0, -24552054, 4028366653326]$ |
\(y^2=x^3-x^2-24552054x+4028366653326\) |
2184.2.0.? |
$[(46827675796544525/2337293, 26928114163788537747488818/2337293)]$ |
244608.cx1 |
244608cx1 |
244608.cx |
244608cx |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{31} \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$50472960$ |
$3.395641$ |
$-316880045595872672/1357028451635831559$ |
$1.13004$ |
$5.16267$ |
$[0, -1, 0, -2004249, -93955214583]$ |
\(y^2=x^3-x^2-2004249x-93955214583\) |
2184.2.0.? |
$[ ]$ |
244608.dg1 |
244608dg1 |
244608.dg |
244608dg |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{31} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.997728758$ |
$1$ |
|
$4$ |
$25236480$ |
$3.049065$ |
$-316880045595872672/1357028451635831559$ |
$1.13004$ |
$4.82747$ |
$[0, 1, 0, -501062, -11744652354]$ |
\(y^2=x^3+x^2-501062x-11744652354\) |
2184.2.0.? |
$[(3007, 118098)]$ |
244608.dm1 |
244608dm1 |
244608.dm |
244608dm |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{31} \cdot 7^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$353310720$ |
$4.368591$ |
$-316880045595872672/1357028451635831559$ |
$1.13004$ |
$6.10367$ |
$[0, 1, 0, -98208217, 32226835018391]$ |
\(y^2=x^3+x^2-98208217x+32226835018391\) |
2184.2.0.? |
$[ ]$ |
244608.fs1 |
244608fs1 |
244608.fs |
244608fs |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{31} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.249599926$ |
$1$ |
|
$4$ |
$50472960$ |
$3.395641$ |
$-316880045595872672/1357028451635831559$ |
$1.13004$ |
$5.16267$ |
$[0, 1, 0, -2004249, 93955214583]$ |
\(y^2=x^3+x^2-2004249x+93955214583\) |
2184.2.0.? |
$[(-3099, 265356)]$ |
244608.fz1 |
244608fz1 |
244608.fz |
244608fz |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{31} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$4.110499688$ |
$1$ |
|
$0$ |
$176655360$ |
$4.022018$ |
$-316880045595872672/1357028451635831559$ |
$1.13004$ |
$5.76848$ |
$[0, 1, 0, -24552054, -4028366653326]$ |
\(y^2=x^3+x^2-24552054x-4028366653326\) |
2184.2.0.? |
$[(2365245/2, 3637433709/2)]$ |