Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
29640.s1 |
29640g1 |
29640.s |
29640g |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 3^{4} \cdot 5^{12} \cdot 13^{5} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$0.341441000$ |
$1$ |
|
$6$ |
$2442240$ |
$2.999012$ |
$-2961686524287311350789156096/139506818115234375$ |
$1.02428$ |
$6.41244$ |
$[0, 1, 0, -75389660, 251925710433]$ |
\(y^2=x^3+x^2-75389660x+251925710433\) |
494.2.0.? |
$[(4936, 9375)]$ |
59280.x1 |
59280h1 |
59280.x |
59280h |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 3^{4} \cdot 5^{12} \cdot 13^{5} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$9.824297148$ |
$1$ |
|
$2$ |
$4884480$ |
$2.999012$ |
$-2961686524287311350789156096/139506818115234375$ |
$1.02428$ |
$6.00801$ |
$[0, -1, 0, -75389660, -251925710433]$ |
\(y^2=x^3-x^2-75389660x-251925710433\) |
494.2.0.? |
$[(237359, 115561395)]$ |
88920.k1 |
88920ba1 |
88920.k |
88920ba |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 3^{10} \cdot 5^{12} \cdot 13^{5} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$48.56796539$ |
$1$ |
|
$0$ |
$19537920$ |
$3.548317$ |
$-2961686524287311350789156096/139506818115234375$ |
$1.02428$ |
$6.37268$ |
$[0, 0, 0, -678506943, -6802672688633]$ |
\(y^2=x^3-678506943x-6802672688633\) |
494.2.0.? |
$[(475775091582425047628501/3468183869, 221706734966281818760401262730109375/3468183869)]$ |
148200.u1 |
148200bd1 |
148200.u |
148200bd |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 3^{4} \cdot 5^{18} \cdot 13^{5} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.006994557$ |
$1$ |
|
$2$ |
$58613760$ |
$3.803730$ |
$-2961686524287311350789156096/139506818115234375$ |
$1.02428$ |
$6.35669$ |
$[0, -1, 0, -1884741508, 31494483287137]$ |
\(y^2=x^3-x^2-1884741508x+31494483287137\) |
494.2.0.? |
$[(25012, 14625)]$ |
177840.bp1 |
177840dz1 |
177840.bp |
177840dz |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 3^{10} \cdot 5^{12} \cdot 13^{5} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$17.10766746$ |
$1$ |
|
$0$ |
$39075840$ |
$3.548317$ |
$-2961686524287311350789156096/139506818115234375$ |
$1.02428$ |
$6.00728$ |
$[0, 0, 0, -678506943, 6802672688633]$ |
\(y^2=x^3-678506943x+6802672688633\) |
494.2.0.? |
$[(8186578264/989, 1265021648578125/989)]$ |
237120.o1 |
237120o1 |
237120.o |
237120o |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 19 \) |
\( - 2^{10} \cdot 3^{4} \cdot 5^{12} \cdot 13^{5} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1.458532332$ |
$1$ |
|
$2$ |
$39075840$ |
$3.345585$ |
$-2961686524287311350789156096/139506818115234375$ |
$1.02428$ |
$5.67107$ |
$[0, -1, 0, -301558641, 2015707242105]$ |
\(y^2=x^3-x^2-301558641x+2015707242105\) |
494.2.0.? |
$[(19248, 1828125)]$ |
237120.eu1 |
237120eu1 |
237120.eu |
237120eu |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 19 \) |
\( - 2^{10} \cdot 3^{4} \cdot 5^{12} \cdot 13^{5} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$39075840$ |
$3.345585$ |
$-2961686524287311350789156096/139506818115234375$ |
$1.02428$ |
$5.67107$ |
$[0, 1, 0, -301558641, -2015707242105]$ |
\(y^2=x^3+x^2-301558641x-2015707242105\) |
494.2.0.? |
$[ ]$ |
296400.fd1 |
296400fd1 |
296400.fd |
296400fd |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 3^{4} \cdot 5^{18} \cdot 13^{5} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$117227520$ |
$3.803730$ |
$-2961686524287311350789156096/139506818115234375$ |
$1.02428$ |
$6.00698$ |
$[0, 1, 0, -1884741508, -31494483287137]$ |
\(y^2=x^3+x^2-1884741508x-31494483287137\) |
494.2.0.? |
$[ ]$ |
385320.bl1 |
385320bl1 |
385320.bl |
385320bl |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 3^{4} \cdot 5^{12} \cdot 13^{11} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$410296320$ |
$4.281487$ |
$-2961686524287311350789156096/139506818115234375$ |
$1.02428$ |
$6.33019$ |
$[0, 1, 0, -12740852596, 553531749231605]$ |
\(y^2=x^3+x^2-12740852596x+553531749231605\) |
494.2.0.? |
$[ ]$ |
444600.di1 |
444600di1 |
444600.di |
444600di |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 3^{10} \cdot 5^{18} \cdot 13^{5} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$32.53291432$ |
$1$ |
|
$0$ |
$468910080$ |
$4.353035$ |
$-2961686524287311350789156096/139506818115234375$ |
$1.02428$ |
$6.32656$ |
$[0, 0, 0, -16962673575, -850334086079125]$ |
\(y^2=x^3-16962673575x-850334086079125\) |
494.2.0.? |
$[(19519207710038635/189307, 2640538069203856174537275/189307)]$ |