Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
19110.ch1 |
19110ce1 |
19110.ch |
19110ce |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{17} \cdot 5 \cdot 7^{10} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$27.64310587$ |
$1$ |
|
$0$ |
$2056320$ |
$3.058186$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$6.51728$ |
$[1, 1, 1, -41633390, -103428611413]$ |
\(y^2+xy+y=x^3+x^2-41633390x-103428611413\) |
1560.2.0.? |
$[(3632491331465/17107, 5660243766645802909/17107)]$ |
19110.ct1 |
19110cj1 |
19110.ct |
19110cj |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{17} \cdot 5 \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$0.148226725$ |
$1$ |
|
$10$ |
$293760$ |
$2.085228$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$5.33291$ |
$[1, 0, 0, -849661, 301419761]$ |
\(y^2+xy=x^3-849661x+301419761\) |
1560.2.0.? |
$[(638, 4055)]$ |
57330.l1 |
57330bm1 |
57330.l |
57330bm |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{23} \cdot 5 \cdot 7^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16450560$ |
$3.607491$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$6.46541$ |
$[1, -1, 0, -374700510, 2792197807636]$ |
\(y^2+xy=x^3-x^2-374700510x+2792197807636\) |
1560.2.0.? |
$[ ]$ |
57330.ca1 |
57330bw1 |
57330.ca |
57330bw |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{23} \cdot 5 \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$57.38909103$ |
$1$ |
|
$0$ |
$2350080$ |
$2.634537$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$5.39980$ |
$[1, -1, 0, -7646949, -8138333547]$ |
\(y^2+xy=x^3-x^2-7646949x-8138333547\) |
1560.2.0.? |
$[(16882277392059819386028009/72054151789, 13241388454309394811902162584933816155/72054151789)]$ |
95550.cf1 |
95550h1 |
95550.cf |
95550h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{17} \cdot 5^{7} \cdot 7^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7050240$ |
$2.889950$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$5.42653$ |
$[1, 1, 0, -21241525, 37677470125]$ |
\(y^2+xy=x^3+x^2-21241525x+37677470125\) |
1560.2.0.? |
$[ ]$ |
95550.fb1 |
95550du1 |
95550.fb |
95550du |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{17} \cdot 5^{7} \cdot 7^{10} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$13.04911567$ |
$1$ |
|
$0$ |
$49351680$ |
$3.862904$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$6.44468$ |
$[1, 0, 1, -1040834751, -12926494757102]$ |
\(y^2+xy+y=x^3-1040834751x-12926494757102\) |
1560.2.0.? |
$[(34154318/7, 199266386703/7)]$ |
152880.w1 |
152880fe1 |
152880.w |
152880fe |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{17} \cdot 5 \cdot 7^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7050240$ |
$2.778378$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$5.10072$ |
$[0, -1, 0, -13594576, -19290864704]$ |
\(y^2=x^3-x^2-13594576x-19290864704\) |
1560.2.0.? |
$[ ]$ |
152880.gv1 |
152880k1 |
152880.gv |
152880k |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{17} \cdot 5 \cdot 7^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$49351680$ |
$3.751331$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$6.07878$ |
$[0, 1, 0, -666134240, 6618098861940]$ |
\(y^2=x^3+x^2-666134240x+6618098861940\) |
1560.2.0.? |
$[ ]$ |
248430.l1 |
248430l1 |
248430.l |
248430l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{17} \cdot 5 \cdot 7^{10} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$345461760$ |
$4.340660$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$6.41048$ |
$[1, 1, 0, -7036042913, -227197479059403]$ |
\(y^2+xy=x^3+x^2-7036042913x-227197479059403\) |
1560.2.0.? |
$[ ]$ |
248430.ei1 |
248430ei1 |
248430.ei |
248430ei |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{17} \cdot 5 \cdot 7^{4} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$0.525365991$ |
$1$ |
|
$4$ |
$49351680$ |
$3.367702$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$5.47064$ |
$[1, 0, 1, -143592713, 662362807628]$ |
\(y^2+xy+y=x^3-143592713x+662362807628\) |
1560.2.0.? |
$[(7242, 44290)]$ |
286650.le1 |
286650le1 |
286650.le |
286650le |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{23} \cdot 5^{7} \cdot 7^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$394813440$ |
$4.412209$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$6.40580$ |
$[1, -1, 1, -9367512755, 349015358441747]$ |
\(y^2+xy+y=x^3-x^2-9367512755x+349015358441747\) |
1560.2.0.? |
$[ ]$ |
286650.lj1 |
286650lj1 |
286650.lj |
286650lj |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{23} \cdot 5^{7} \cdot 7^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$56401920$ |
$3.439255$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$5.47667$ |
$[1, -1, 1, -191173730, -1017482867103]$ |
\(y^2+xy+y=x^3-x^2-191173730x-1017482867103\) |
1560.2.0.? |
$[ ]$ |
458640.ev1 |
458640ev1 |
458640.ev |
458640ev |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{23} \cdot 5 \cdot 7^{10} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$247.4278407$ |
$1$ |
|
$0$ |
$394813440$ |
$4.300636$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$6.07214$ |
$[0, 0, 0, -5995208163, -178694664480542]$ |
\(y^2=x^3-5995208163x-178694664480542\) |
1560.2.0.? |
$[(1282391964443798766926645716347592488047828257343791397647810078432671553771086235980236046023844599110475231/3116934217445644254266604860161877124635054118864739, 1104266837402046316708445519697320371386779990609020924021607944862213617640405528742239852619187807941800807008910915530238029432436378422820571956679539038135734/3116934217445644254266604860161877124635054118864739)]$ |
458640.mh1 |
458640mh1 |
458640.mh |
458640mh |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{23} \cdot 5 \cdot 7^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1560$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$56401920$ |
$3.327682$ |
$-28253264609835195889/4297784624640$ |
$1.06658$ |
$5.17651$ |
$[0, 0, 0, -122351187, 520975698194]$ |
\(y^2=x^3-122351187x+520975698194\) |
1560.2.0.? |
$[ ]$ |