| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 7350.k1 |
7350p1 |
7350.k |
7350p |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{4} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$42$ |
$16$ |
$0$ |
$2.914390012$ |
$1$ |
|
$2$ |
$5184$ |
$0.472939$ |
$-2637114025/6912$ |
$0.99964$ |
$3.59755$ |
$[1, 1, 0, -900, -10800]$ |
\(y^2+xy=x^3+x^2-900x-10800\) |
3.4.0.a.1, 6.8.0.b.1, 21.8.0-3.a.1.1, 42.16.0-6.b.1.1 |
$[(56, 316)]$ |
| 7350.bf1 |
7350bf1 |
7350.bf |
7350bf |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{4} \cdot 7^{8} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$6$ |
$16$ |
$0$ |
$0.924076951$ |
$1$ |
|
$10$ |
$36288$ |
$1.445894$ |
$-2637114025/6912$ |
$0.99964$ |
$4.90904$ |
$[1, 0, 1, -44126, 3572048]$ |
\(y^2+xy+y=x^3-44126x+3572048\) |
3.8.0-3.a.1.2, 6.16.0-6.b.1.2 |
$[(117, 61)]$ |
| 7350.bv1 |
7350bo1 |
7350.bv |
7350bo |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{10} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$181440$ |
$2.250614$ |
$-2637114025/6912$ |
$0.99964$ |
$5.99375$ |
$[1, 1, 1, -1103138, 446506031]$ |
\(y^2+xy+y=x^3+x^2-1103138x+446506031\) |
3.4.0.a.1, 6.8.0.b.1, 15.8.0-3.a.1.2, 30.16.0-6.b.1.2 |
$[ ]$ |
| 7350.cv1 |
7350cn1 |
7350.cv |
7350cn |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{10} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25920$ |
$1.277658$ |
$-2637114025/6912$ |
$0.99964$ |
$4.68227$ |
$[1, 0, 0, -22513, -1304983]$ |
\(y^2+xy=x^3-22513x-1304983\) |
3.4.0.a.1, 6.8.0.b.1, 105.8.0.?, 210.16.0.? |
$[ ]$ |
| 22050.z1 |
22050v1 |
22050.z |
22050v |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 5^{10} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1451520$ |
$2.799919$ |
$-2637114025/6912$ |
$0.99964$ |
$5.99444$ |
$[1, -1, 0, -9928242, -12065591084]$ |
\(y^2+xy=x^3-x^2-9928242x-12065591084\) |
3.4.0.a.1, 6.8.0.b.1, 15.8.0-3.a.1.1, 30.16.0-6.b.1.1 |
$[ ]$ |
| 22050.bs1 |
22050bj1 |
22050.bs |
22050bj |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 5^{10} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$2.349497622$ |
$1$ |
|
$2$ |
$207360$ |
$1.826963$ |
$-2637114025/6912$ |
$0.99964$ |
$4.82702$ |
$[1, -1, 0, -202617, 35234541]$ |
\(y^2+xy=x^3-x^2-202617x+35234541\) |
3.4.0.a.1, 6.8.0.b.1, 105.8.0.?, 210.16.0.? |
$[(258, 159)]$ |
| 22050.dw1 |
22050fl1 |
22050.dw |
22050fl |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$42$ |
$16$ |
$0$ |
$0.078448832$ |
$1$ |
|
$12$ |
$41472$ |
$1.022245$ |
$-2637114025/6912$ |
$0.99964$ |
$3.86146$ |
$[1, -1, 1, -8105, 283497]$ |
\(y^2+xy+y=x^3-x^2-8105x+283497\) |
3.4.0.a.1, 6.8.0.b.1, 21.8.0-3.a.1.2, 42.16.0-6.b.1.2 |
$[(-1, 540)]$ |
| 22050.en1 |
22050fa1 |
22050.en |
22050fa |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 5^{4} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$6$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$290304$ |
$1.995201$ |
$-2637114025/6912$ |
$0.99964$ |
$5.02888$ |
$[1, -1, 1, -397130, -96445303]$ |
\(y^2+xy+y=x^3-x^2-397130x-96445303\) |
3.8.0-3.a.1.1, 6.16.0-6.b.1.1 |
$[ ]$ |
| 58800.da1 |
58800fi1 |
58800.da |
58800fi |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{10} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$2.998738570$ |
$1$ |
|
$2$ |
$622080$ |
$1.970806$ |
$-2637114025/6912$ |
$0.99964$ |
$4.55308$ |
$[0, -1, 0, -360208, 83518912]$ |
\(y^2=x^3-x^2-360208x+83518912\) |
3.4.0.a.1, 6.8.0.b.1, 420.16.0.? |
$[(216, 3968)]$ |
| 58800.db1 |
58800gn1 |
58800.db |
58800gn |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{4} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12$ |
$16$ |
$0$ |
$5.647956232$ |
$1$ |
|
$0$ |
$870912$ |
$2.139042$ |
$-2637114025/6912$ |
$0.99964$ |
$4.73691$ |
$[0, -1, 0, -706008, -228611088]$ |
\(y^2=x^3-x^2-706008x-228611088\) |
3.4.0.a.1, 6.8.0.b.1, 12.16.0-6.b.1.1 |
$[(8908/3, 173440/3)]$ |
| 58800.hd1 |
58800jp1 |
58800.hd |
58800jp |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{4} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$84$ |
$16$ |
$0$ |
$0.702553963$ |
$1$ |
|
$4$ |
$124416$ |
$1.166086$ |
$-2637114025/6912$ |
$0.99964$ |
$3.67376$ |
$[0, 1, 0, -14408, 662388]$ |
\(y^2=x^3+x^2-14408x+662388\) |
3.4.0.a.1, 6.8.0.b.1, 84.16.0.? |
$[(94, 384)]$ |
| 58800.he1 |
58800hs1 |
58800.he |
58800hs |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{3} \cdot 5^{10} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$5.851822626$ |
$1$ |
|
$2$ |
$4354560$ |
$2.943760$ |
$-2637114025/6912$ |
$0.99964$ |
$5.61623$ |
$[0, 1, 0, -17650208, -28611686412]$ |
\(y^2=x^3+x^2-17650208x-28611686412\) |
3.4.0.a.1, 6.8.0.b.1, 60.16.0-6.b.1.2 |
$[(152602, 59590272)]$ |
| 176400.if1 |
176400bd1 |
176400.if |
176400bd |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$84$ |
$16$ |
$0$ |
$1.596882054$ |
$1$ |
|
$4$ |
$995328$ |
$1.715393$ |
$-2637114025/6912$ |
$0.99964$ |
$3.88531$ |
$[0, 0, 0, -129675, -18014150]$ |
\(y^2=x^3-129675x-18014150\) |
3.4.0.a.1, 6.8.0.b.1, 84.16.0.? |
$[(485, 5760)]$ |
| 176400.ig1 |
176400hr1 |
176400.ig |
176400hr |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{10} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$3.072986648$ |
$1$ |
|
$2$ |
$34836480$ |
$3.493065$ |
$-2637114025/6912$ |
$0.99964$ |
$5.65113$ |
$[0, 0, 0, -158851875, 772356681250]$ |
\(y^2=x^3-158851875x+772356681250\) |
3.4.0.a.1, 6.8.0.b.1, 60.16.0-6.b.1.1 |
$[(6321, 144256)]$ |
| 176400.mk1 |
176400fp1 |
176400.mk |
176400fp |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{10} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$4976640$ |
$2.520111$ |
$-2637114025/6912$ |
$0.99964$ |
$4.68466$ |
$[0, 0, 0, -3241875, -2251768750]$ |
\(y^2=x^3-3241875x-2251768750\) |
3.4.0.a.1, 6.8.0.b.1, 420.16.0.? |
$[ ]$ |
| 176400.ml1 |
176400dg1 |
176400.ml |
176400dg |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{9} \cdot 5^{4} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6967296$ |
$2.688347$ |
$-2637114025/6912$ |
$0.99964$ |
$4.85178$ |
$[0, 0, 0, -6354075, 6178853450]$ |
\(y^2=x^3-6354075x+6178853450\) |
3.4.0.a.1, 6.8.0.b.1, 12.16.0-6.b.1.2 |
$[ ]$ |
| 235200.fw1 |
235200fw1 |
235200.fw |
235200fw |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{3} \cdot 5^{10} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4976640$ |
$2.317379$ |
$-2637114025/6912$ |
$0.99964$ |
$4.37900$ |
$[0, -1, 0, -1440833, -666710463]$ |
\(y^2=x^3-x^2-1440833x-666710463\) |
3.4.0.a.1, 6.8.0.b.1, 840.16.0.? |
$[ ]$ |
| 235200.fx1 |
235200fx1 |
235200.fx |
235200fx |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{3} \cdot 5^{4} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6967296$ |
$2.485615$ |
$-2637114025/6912$ |
$0.99964$ |
$4.54223$ |
$[0, -1, 0, -2824033, 1831712737]$ |
\(y^2=x^3-x^2-2824033x+1831712737\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.3 |
$[ ]$ |
| 235200.io1 |
235200io1 |
235200.io |
235200io |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{3} \cdot 5^{10} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$34836480$ |
$3.290333$ |
$-2637114025/6912$ |
$0.99964$ |
$5.32299$ |
$[0, -1, 0, -70600833, -228822890463]$ |
\(y^2=x^3-x^2-70600833x-228822890463\) |
3.4.0.a.1, 6.8.0.b.1, 120.16.0.? |
$[ ]$ |
| 235200.ip1 |
235200ip1 |
235200.ip |
235200ip |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{3} \cdot 5^{4} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$995328$ |
$1.512659$ |
$-2637114025/6912$ |
$0.99964$ |
$3.59824$ |
$[0, -1, 0, -57633, 5356737]$ |
\(y^2=x^3-x^2-57633x+5356737\) |
3.4.0.a.1, 6.8.0.b.1, 168.16.0.? |
$[ ]$ |
| 235200.uk1 |
235200uk1 |
235200.uk |
235200uk |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{3} \cdot 5^{4} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6967296$ |
$2.485615$ |
$-2637114025/6912$ |
$0.99964$ |
$4.54223$ |
$[0, 1, 0, -2824033, -1831712737]$ |
\(y^2=x^3+x^2-2824033x-1831712737\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.2 |
$[ ]$ |
| 235200.ul1 |
235200ul1 |
235200.ul |
235200ul |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{3} \cdot 5^{10} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4976640$ |
$2.317379$ |
$-2637114025/6912$ |
$0.99964$ |
$4.37900$ |
$[0, 1, 0, -1440833, 666710463]$ |
\(y^2=x^3+x^2-1440833x+666710463\) |
3.4.0.a.1, 6.8.0.b.1, 840.16.0.? |
$[ ]$ |
| 235200.xc1 |
235200xc1 |
235200.xc |
235200xc |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{3} \cdot 5^{4} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$995328$ |
$1.512659$ |
$-2637114025/6912$ |
$0.99964$ |
$3.59824$ |
$[0, 1, 0, -57633, -5356737]$ |
\(y^2=x^3+x^2-57633x-5356737\) |
3.4.0.a.1, 6.8.0.b.1, 168.16.0.? |
$[ ]$ |
| 235200.xd1 |
235200xd1 |
235200.xd |
235200xd |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{3} \cdot 5^{10} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$34836480$ |
$3.290333$ |
$-2637114025/6912$ |
$0.99964$ |
$5.32299$ |
$[0, 1, 0, -70600833, 228822890463]$ |
\(y^2=x^3+x^2-70600833x+228822890463\) |
3.4.0.a.1, 6.8.0.b.1, 120.16.0.? |
$[ ]$ |
| 705600.wg1 |
- |
705600.wg |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{9} \cdot 5^{10} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$4.365984356$ |
$1$ |
|
$2$ |
$39813120$ |
$2.866684$ |
$-2637114025/6912$ |
$0.99964$ |
$4.51124$ |
$[0, 0, 0, -12967500, 18014150000]$ |
\(y^2=x^3-12967500x+18014150000\) |
3.4.0.a.1, 6.8.0.b.1, 840.16.0.? |
$[(2164, 9288)]$ |
| 705600.wh1 |
- |
705600.wh |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{9} \cdot 5^{4} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$55738368$ |
$3.034920$ |
$-2637114025/6912$ |
$0.99964$ |
$4.66115$ |
$[0, 0, 0, -25416300, 49430827600]$ |
\(y^2=x^3-25416300x+49430827600\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.4 |
$[ ]$ |
| 705600.wi1 |
- |
705600.wi |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{9} \cdot 5^{10} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$39813120$ |
$2.866684$ |
$-2637114025/6912$ |
$0.99964$ |
$4.51124$ |
$[0, 0, 0, -12967500, -18014150000]$ |
\(y^2=x^3-12967500x-18014150000\) |
3.4.0.a.1, 6.8.0.b.1, 840.16.0.? |
$[ ]$ |
| 705600.wj1 |
- |
705600.wj |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{9} \cdot 5^{4} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$4.069167421$ |
$1$ |
|
$2$ |
$55738368$ |
$3.034920$ |
$-2637114025/6912$ |
$0.99964$ |
$4.66115$ |
$[0, 0, 0, -25416300, -49430827600]$ |
\(y^2=x^3-25416300x-49430827600\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.1 |
$[(28420, 4709880)]$ |
| 705600.bgm1 |
- |
705600.bgm |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{9} \cdot 5^{10} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$5.323283017$ |
$1$ |
|
$2$ |
$278691840$ |
$3.839642$ |
$-2637114025/6912$ |
$0.99964$ |
$5.37822$ |
$[0, 0, 0, -635407500, 6178853450000]$ |
\(y^2=x^3-635407500x+6178853450000\) |
3.4.0.a.1, 6.8.0.b.1, 120.16.0.? |
$[(-20384, 3265164)]$ |
| 705600.bgn1 |
- |
705600.bgn |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7962624$ |
$2.061966$ |
$-2637114025/6912$ |
$0.99964$ |
$3.79417$ |
$[0, 0, 0, -518700, 144113200]$ |
\(y^2=x^3-518700x+144113200\) |
3.4.0.a.1, 6.8.0.b.1, 168.16.0.? |
$[ ]$ |
| 705600.bgo1 |
- |
705600.bgo |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{9} \cdot 5^{10} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$49$ |
$7$ |
$0$ |
$278691840$ |
$3.839642$ |
$-2637114025/6912$ |
$0.99964$ |
$5.37822$ |
$[0, 0, 0, -635407500, -6178853450000]$ |
\(y^2=x^3-635407500x-6178853450000\) |
3.4.0.a.1, 6.8.0.b.1, 120.16.0.? |
$[ ]$ |
| 705600.bgp1 |
- |
705600.bgp |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{26} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$13.50559342$ |
$1$ |
|
$0$ |
$7962624$ |
$2.061966$ |
$-2637114025/6912$ |
$0.99964$ |
$3.79417$ |
$[0, 0, 0, -518700, -144113200]$ |
\(y^2=x^3-518700x-144113200\) |
3.4.0.a.1, 6.8.0.b.1, 168.16.0.? |
$[(9632464/31, 29816101188/31)]$ |