| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 12090.p3 |
12090j4 |
12090.p |
12090j |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{2} \cdot 3^{12} \cdot 5 \cdot 13 \cdot 31^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$48360$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$49152$ |
$1.411680$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.33003$ |
$[1, 0, 1, -13209, -799088]$ |
\(y^2+xy+y=x^3-13209x-799088\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 52.12.0-4.c.1.2, 260.24.0.?, $\ldots$ |
$[ ]$ |
| 36270.cc3 |
36270bt3 |
36270.cc |
36270bt |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{2} \cdot 3^{18} \cdot 5 \cdot 13 \cdot 31^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48360$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$393216$ |
$1.960985$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.50478$ |
$[1, -1, 1, -118877, 21575369]$ |
\(y^2+xy+y=x^3-x^2-118877x+21575369\) |
2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.1, 156.12.0.?, 248.12.0.?, $\ldots$ |
$[ ]$ |
| 60450.bq3 |
60450cc3 |
60450.bq |
60450cc |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 31 \) |
\( - 2^{2} \cdot 3^{12} \cdot 5^{7} \cdot 13 \cdot 31^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$48360$ |
$48$ |
$0$ |
$9.572109293$ |
$1$ |
|
$0$ |
$1179648$ |
$2.216400$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.57415$ |
$[1, 1, 1, -330213, -99885969]$ |
\(y^2+xy+y=x^3+x^2-330213x-99885969\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 260.24.0.?, 3720.24.0.?, 9672.24.0.?, $\ldots$ |
$[(17119/3, 2093150/3)]$ |
| 96720.c3 |
96720bi3 |
96720.c |
96720bi |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{14} \cdot 3^{12} \cdot 5 \cdot 13 \cdot 31^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48360$ |
$48$ |
$0$ |
$2.167719116$ |
$1$ |
|
$5$ |
$1179648$ |
$2.104828$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.27025$ |
$[0, -1, 0, -211336, 51141616]$ |
\(y^2=x^3-x^2-211336x+51141616\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 52.12.0-4.c.1.1, 260.24.0.?, $\ldots$ |
$[(178, 4374)]$ |
| 157170.cy3 |
157170a3 |
157170.cy |
157170a |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \cdot 31 \) |
\( - 2^{2} \cdot 3^{12} \cdot 5 \cdot 13^{7} \cdot 31^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$48360$ |
$48$ |
$0$ |
$8.029464012$ |
$1$ |
|
$2$ |
$8257536$ |
$2.694153$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.68802$ |
$[1, 0, 0, -2232240, -1753363548]$ |
\(y^2+xy=x^3-2232240x-1753363548\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 260.24.0.?, 3720.24.0.?, 9672.24.0.?, $\ldots$ |
$[(571872/17, 190347018/17)]$ |
| 181350.b3 |
181350dh4 |
181350.b |
181350dh |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 31 \) |
\( - 2^{2} \cdot 3^{18} \cdot 5^{7} \cdot 13 \cdot 31^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48360$ |
$48$ |
$0$ |
$3.347901863$ |
$1$ |
|
$4$ |
$9437184$ |
$2.765705$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.70352$ |
$[1, -1, 0, -2971917, 2693949241]$ |
\(y^2+xy=x^3-x^2-2971917x+2693949241\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 260.12.0.?, 780.24.0.?, $\ldots$ |
$[(-427, 62543)]$ |
| 290160.di3 |
290160di3 |
290160.di |
290160di |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{14} \cdot 3^{18} \cdot 5 \cdot 13 \cdot 31^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48360$ |
$48$ |
$0$ |
$13.24844502$ |
$1$ |
|
$1$ |
$9437184$ |
$2.654133$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.42133$ |
$[0, 0, 0, -1902027, -1378921606]$ |
\(y^2=x^3-1902027x-1378921606\) |
2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.2, 156.12.0.?, 248.12.0.?, $\ldots$ |
$[(34638959/25, 203803192802/25)]$ |
| 374790.r3 |
374790r4 |
374790.r |
374790r |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 31^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 5 \cdot 13 \cdot 31^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48360$ |
$48$ |
$0$ |
$12.97885286$ |
$1$ |
|
$0$ |
$47185920$ |
$3.128674$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.77686$ |
$[1, 1, 0, -12693388, 23767543012]$ |
\(y^2+xy=x^3+x^2-12693388x+23767543012\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 260.12.0.?, 620.12.0.?, $\ldots$ |
$[(11641417/7, 39674885263/7)]$ |
| 386880.eg3 |
386880eg3 |
386880.eg |
386880eg |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{20} \cdot 3^{12} \cdot 5 \cdot 13 \cdot 31^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48360$ |
$48$ |
$0$ |
$28.77940452$ |
$1$ |
|
$1$ |
$9437184$ |
$2.451401$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.13338$ |
$[0, -1, 0, -845345, -408287583]$ |
\(y^2=x^3-x^2-845345x-408287583\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.1, 104.12.0.?, 260.12.0.?, $\ldots$ |
$[(6024917229319/22365, 14743090997978942528/22365)]$ |
| 386880.gx3 |
386880gx4 |
386880.gx |
386880gx |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{20} \cdot 3^{12} \cdot 5 \cdot 13 \cdot 31^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48360$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$9437184$ |
$2.451401$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.13338$ |
$[0, 1, 0, -845345, 408287583]$ |
\(y^2=x^3+x^2-845345x+408287583\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.2, 104.12.0.?, 260.12.0.?, $\ldots$ |
$[ ]$ |
| 471510.d3 |
471510d4 |
471510.d |
471510d |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 31 \) |
\( - 2^{2} \cdot 3^{18} \cdot 5 \cdot 13^{7} \cdot 31^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48360$ |
$48$ |
$0$ |
$1.530772416$ |
$1$ |
|
$4$ |
$66060288$ |
$3.243462$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.79835$ |
$[1, -1, 0, -20090160, 47340815796]$ |
\(y^2+xy=x^3-x^2-20090160x+47340815796\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 260.12.0.?, 780.24.0.?, $\ldots$ |
$[(2181, 116787)]$ |
| 483600.hk3 |
483600hk4 |
483600.hk |
483600hk |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 31 \) |
\( - 2^{14} \cdot 3^{12} \cdot 5^{7} \cdot 13 \cdot 31^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$48360$ |
$48$ |
$0$ |
$4.117514872$ |
$1$ |
|
$7$ |
$28311552$ |
$2.909546$ |
$-254850956966062729/127607200177860$ |
$0.94413$ |
$4.48294$ |
$[0, 1, 0, -5283408, 6382135188]$ |
\(y^2=x^3+x^2-5283408x+6382135188\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 260.24.0.?, 3720.24.0.?, 9672.24.0.?, $\ldots$ |
$[(1212, 41958)]$ |