Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
6120.b1 |
6120p1 |
6120.b |
6120p |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5 \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.215566755$ |
$1$ |
|
$6$ |
$7680$ |
$1.083097$ |
$-22864543488/7099285$ |
$1.02882$ |
$4.23685$ |
$[0, 0, 0, -4023, 121743]$ |
\(y^2=x^3-4023x+121743\) |
510.2.0.? |
$[(-27, 459)]$ |
6120.r1 |
6120b1 |
6120.r |
6120b |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5 \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2560$ |
$0.533792$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.48087$ |
$[0, 0, 0, -447, -4509]$ |
\(y^2=x^3-447x-4509\) |
510.2.0.? |
$[ ]$ |
12240.z1 |
12240c1 |
12240.z |
12240c |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5 \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15360$ |
$1.083097$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.92485$ |
$[0, 0, 0, -4023, -121743]$ |
\(y^2=x^3-4023x-121743\) |
510.2.0.? |
$[ ]$ |
12240.cb1 |
12240e1 |
12240.cb |
12240e |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5 \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5120$ |
$0.533792$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.22453$ |
$[0, 0, 0, -447, 4509]$ |
\(y^2=x^3-447x+4509\) |
510.2.0.? |
$[ ]$ |
30600.ci1 |
30600d1 |
30600.ci |
30600d |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{7} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$2.072885556$ |
$1$ |
|
$2$ |
$184320$ |
$1.887815$ |
$-22864543488/7099285$ |
$1.02882$ |
$4.51159$ |
$[0, 0, 0, -100575, 15217875]$ |
\(y^2=x^3-100575x+15217875\) |
510.2.0.? |
$[(135, 2025)]$ |
30600.co1 |
30600bo1 |
30600.co |
30600bo |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{7} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.348127593$ |
$1$ |
|
$4$ |
$61440$ |
$1.338511$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.87340$ |
$[0, 0, 0, -11175, -563625]$ |
\(y^2=x^3-11175x-563625\) |
510.2.0.? |
$[(385, 7225)]$ |
48960.m1 |
48960f1 |
48960.m |
48960f |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5 \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$5.020711924$ |
$1$ |
|
$2$ |
$40960$ |
$0.880364$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.19571$ |
$[0, 0, 0, -1788, -36072]$ |
\(y^2=x^3-1788x-36072\) |
510.2.0.? |
$[(237, 3585)]$ |
48960.ct1 |
48960dl1 |
48960.ct |
48960dl |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5 \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$40960$ |
$0.880364$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.19571$ |
$[0, 0, 0, -1788, 36072]$ |
\(y^2=x^3-1788x+36072\) |
510.2.0.? |
$[ ]$ |
48960.du1 |
48960z1 |
48960.du |
48960z |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5 \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.025723612$ |
$1$ |
|
$2$ |
$122880$ |
$1.429670$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.80612$ |
$[0, 0, 0, -16092, 973944]$ |
\(y^2=x^3-16092x+973944\) |
510.2.0.? |
$[(405, 7803)]$ |
48960.fk1 |
48960dx1 |
48960.fk |
48960dx |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5 \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$122880$ |
$1.429670$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.80612$ |
$[0, 0, 0, -16092, -973944]$ |
\(y^2=x^3-16092x-973944\) |
510.2.0.? |
$[ ]$ |
61200.bb1 |
61200l1 |
61200.bb |
61200l |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{7} \cdot 17^{5} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.381617104$ |
$1$ |
|
$8$ |
$122880$ |
$1.338511$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.62981$ |
$[0, 0, 0, -11175, 563625]$ |
\(y^2=x^3-11175x+563625\) |
510.2.0.? |
$[(40, 425), (-96, 867)]$ |
61200.bi1 |
61200e1 |
61200.bi |
61200e |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{7} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$9.721406586$ |
$1$ |
|
$0$ |
$368640$ |
$1.887815$ |
$-22864543488/7099285$ |
$1.02882$ |
$4.22786$ |
$[0, 0, 0, -100575, -15217875]$ |
\(y^2=x^3-100575x-15217875\) |
510.2.0.? |
$[(63396/11, 11596581/11)]$ |
104040.bc1 |
104040c1 |
104040.bc |
104040c |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5 \cdot 17^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$7.231811828$ |
$1$ |
|
$2$ |
$737280$ |
$1.950397$ |
$-22864543488/7099285$ |
$1.02882$ |
$4.09868$ |
$[0, 0, 0, -129183, -22152717]$ |
\(y^2=x^3-129183x-22152717\) |
510.2.0.? |
$[(3171, 177351)]$ |
104040.cx1 |
104040bv1 |
104040.cx |
104040bv |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5 \cdot 17^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$3.236102202$ |
$1$ |
|
$0$ |
$2211840$ |
$2.499702$ |
$-22864543488/7099285$ |
$1.02882$ |
$4.66926$ |
$[0, 0, 0, -1162647, 598123359]$ |
\(y^2=x^3-1162647x+598123359\) |
510.2.0.? |
$[(-30294/7, 11275335/7)]$ |
208080.u1 |
208080hd1 |
208080.u |
208080hd |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5 \cdot 17^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$5.641448095$ |
$1$ |
|
$0$ |
$1474560$ |
$1.950397$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.86668$ |
$[0, 0, 0, -129183, 22152717]$ |
\(y^2=x^3-129183x+22152717\) |
510.2.0.? |
$[(5916/5, 274839/5)]$ |
208080.ee1 |
208080gu1 |
208080.ee |
208080gu |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5 \cdot 17^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4423680$ |
$2.499702$ |
$-22864543488/7099285$ |
$1.02882$ |
$4.40496$ |
$[0, 0, 0, -1162647, -598123359]$ |
\(y^2=x^3-1162647x-598123359\) |
510.2.0.? |
$[ ]$ |
244800.cp1 |
244800cp1 |
244800.cp |
244800cp |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{7} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2949120$ |
$2.234390$ |
$-22864543488/7099285$ |
$1.02882$ |
$4.09068$ |
$[0, 0, 0, -402300, -121743000]$ |
\(y^2=x^3-402300x-121743000\) |
510.2.0.? |
$[ ]$ |
244800.dn1 |
244800dn1 |
244800.dn |
244800dn |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{7} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.930381507$ |
$1$ |
|
$2$ |
$983040$ |
$1.685083$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.55945$ |
$[0, 0, 0, -44700, 4509000]$ |
\(y^2=x^3-44700x+4509000\) |
510.2.0.? |
$[(165, 1275)]$ |
244800.pz1 |
244800pz1 |
244800.pz |
244800pz |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{7} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$983040$ |
$1.685083$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.55945$ |
$[0, 0, 0, -44700, -4509000]$ |
\(y^2=x^3-44700x-4509000\) |
510.2.0.? |
$[ ]$ |
244800.qu1 |
244800qu1 |
244800.qu |
244800qu |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{7} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$5.568517170$ |
$1$ |
|
$0$ |
$2949120$ |
$2.234390$ |
$-22864543488/7099285$ |
$1.02882$ |
$4.09068$ |
$[0, 0, 0, -402300, 121743000]$ |
\(y^2=x^3-402300x+121743000\) |
510.2.0.? |
$[(9585/2, 909225/2)]$ |
299880.bu1 |
299880bu1 |
299880.bu |
299880bu |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5 \cdot 7^{6} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.696976542$ |
$1$ |
|
$6$ |
$844800$ |
$1.506746$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.33247$ |
$[0, 0, 0, -21903, 1546587]$ |
\(y^2=x^3-21903x+1546587\) |
510.2.0.? |
$[(39, 867)]$ |
299880.db1 |
299880db1 |
299880.db |
299880db |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5 \cdot 7^{6} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2534400$ |
$2.056053$ |
$-22864543488/7099285$ |
$1.02882$ |
$3.85516$ |
$[0, 0, 0, -197127, -41757849]$ |
\(y^2=x^3-197127x-41757849\) |
510.2.0.? |
$[ ]$ |