Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
124800.o1 |
124800v1 |
124800.o |
124800v |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{7} \cdot 5^{10} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$3830400$ |
$2.541100$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$4.98970$ |
$[0, -1, 0, -6236458, -5992647338]$ |
\(y^2=x^3-x^2-6236458x-5992647338\) |
312.2.0.? |
$[ ]$ |
124800.x1 |
124800eb1 |
124800.x |
124800eb |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{7} \cdot 5^{4} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$9.099163932$ |
$1$ |
|
$0$ |
$766080$ |
$1.736380$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$4.16677$ |
$[0, -1, 0, -249458, 48040962]$ |
\(y^2=x^3-x^2-249458x+48040962\) |
312.2.0.? |
$[(25681/9, 618508/9)]$ |
124800.by1 |
124800dh1 |
124800.by |
124800dh |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{7} \cdot 5^{10} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7660800$ |
$2.887672$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$5.34411$ |
$[0, -1, 0, -24945833, 47966124537]$ |
\(y^2=x^3-x^2-24945833x+47966124537\) |
312.2.0.? |
$[ ]$ |
124800.cj1 |
124800el1 |
124800.cj |
124800el |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{7} \cdot 5^{4} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1532160$ |
$2.082954$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$4.52118$ |
$[0, -1, 0, -997833, -383329863]$ |
\(y^2=x^3-x^2-997833x-383329863\) |
312.2.0.? |
$[ ]$ |
124800.dj1 |
124800db1 |
124800.dj |
124800db |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{7} \cdot 5^{4} \cdot 13^{5} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$0.077358992$ |
$1$ |
|
$38$ |
$1532160$ |
$2.082954$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$4.52118$ |
$[0, 1, 0, -997833, 383329863]$ |
\(y^2=x^3+x^2-997833x+383329863\) |
312.2.0.? |
$[(1203, 30420), (527, 2028)]$ |
124800.dt1 |
124800bu1 |
124800.dt |
124800bu |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{7} \cdot 5^{10} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$7660800$ |
$2.887672$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$5.34411$ |
$[0, 1, 0, -24945833, -47966124537]$ |
\(y^2=x^3+x^2-24945833x-47966124537\) |
312.2.0.? |
$[ ]$ |
124800.et1 |
124800fi1 |
124800.et |
124800fi |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{7} \cdot 5^{4} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$766080$ |
$1.736380$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$4.16677$ |
$[0, 1, 0, -249458, -48040962]$ |
\(y^2=x^3+x^2-249458x-48040962\) |
312.2.0.? |
$[ ]$ |
124800.ff1 |
124800cl1 |
124800.ff |
124800cl |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{7} \cdot 5^{10} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1.240893689$ |
$1$ |
|
$2$ |
$3830400$ |
$2.541100$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$4.98970$ |
$[0, 1, 0, -6236458, 5992647338]$ |
\(y^2=x^3+x^2-6236458x+5992647338\) |
312.2.0.? |
$[(1487, 3042)]$ |
374400.cn1 |
374400cn1 |
374400.cn |
374400cn |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{13} \cdot 5^{10} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$5.815536477$ |
$1$ |
|
$2$ |
$61286400$ |
$3.436977$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$5.40026$ |
$[0, 0, 0, -224512500, 1294860850000]$ |
\(y^2=x^3-224512500x+1294860850000\) |
312.2.0.? |
$[(12029, 578583)]$ |
374400.cq1 |
374400cq1 |
374400.cq |
374400cq |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{13} \cdot 5^{4} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$15.99643613$ |
$1$ |
|
$0$ |
$6128640$ |
$2.285686$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$4.32371$ |
$[0, 0, 0, -2245125, -1294860850]$ |
\(y^2=x^3-2245125x-1294860850\) |
312.2.0.? |
$[(24436490/41, 120128577770/41)]$ |
374400.dv1 |
374400dv1 |
374400.dv |
374400dv |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{13} \cdot 5^{10} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$30643200$ |
$3.090405$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$5.07619$ |
$[0, 0, 0, -56128125, 161857606250]$ |
\(y^2=x^3-56128125x+161857606250\) |
312.2.0.? |
$[ ]$ |
374400.dz1 |
374400dz1 |
374400.dz |
374400dz |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{13} \cdot 5^{4} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$2.095960210$ |
$1$ |
|
$2$ |
$12257280$ |
$2.632259$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$4.64778$ |
$[0, 0, 0, -8980500, -10358886800]$ |
\(y^2=x^3-8980500x-10358886800\) |
312.2.0.? |
$[(5516, 328536)]$ |
374400.hs1 |
374400hs1 |
374400.hs |
374400hs |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{13} \cdot 5^{10} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$30643200$ |
$3.090405$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$5.07619$ |
$[0, 0, 0, -56128125, -161857606250]$ |
\(y^2=x^3-56128125x-161857606250\) |
312.2.0.? |
$[ ]$ |
374400.hv1 |
374400hv1 |
374400.hv |
374400hv |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{13} \cdot 5^{4} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12257280$ |
$2.632259$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$4.64778$ |
$[0, 0, 0, -8980500, 10358886800]$ |
\(y^2=x^3-8980500x+10358886800\) |
312.2.0.? |
$[ ]$ |
374400.iu1 |
374400iu1 |
374400.iu |
374400iu |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{13} \cdot 5^{10} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$61286400$ |
$3.436977$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$5.40026$ |
$[0, 0, 0, -224512500, -1294860850000]$ |
\(y^2=x^3-224512500x-1294860850000\) |
312.2.0.? |
$[ ]$ |
374400.iy1 |
374400iy1 |
374400.iy |
374400iy |
$1$ |
$1$ |
\( 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{13} \cdot 5^{4} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$312$ |
$2$ |
$0$ |
$2.774960982$ |
$1$ |
|
$0$ |
$6128640$ |
$2.285686$ |
$-21459903980300000/812017791$ |
$1.07582$ |
$4.32371$ |
$[0, 0, 0, -2245125, 1294860850]$ |
\(y^2=x^3-2245125x+1294860850\) |
312.2.0.? |
$[(3305/2, 15795/2)]$ |