| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 2142.j1 |
2142b1 |
2142.j |
2142b |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2 \cdot 3^{3} \cdot 7^{3} \cdot 17 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$480$ |
$-0.000988$ |
$-19486825371/11662$ |
$0.90778$ |
$3.51912$ |
$[1, -1, 0, -168, 882]$ |
\(y^2+xy=x^3-x^2-168x+882\) |
3.8.0-3.a.1.2, 2856.16.0.? |
$[ ]$ |
| 2142.m1 |
2142n2 |
2142.m |
2142n |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2 \cdot 3^{9} \cdot 7^{3} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1440$ |
$0.548318$ |
$-19486825371/11662$ |
$0.90778$ |
$4.37859$ |
$[1, -1, 1, -1514, -22301]$ |
\(y^2+xy+y=x^3-x^2-1514x-22301\) |
3.8.0-3.a.1.1, 2856.16.0.? |
$[ ]$ |
| 14994.f1 |
14994k1 |
14994.f |
14994k |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2 \cdot 3^{3} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$2.574746650$ |
$1$ |
|
$2$ |
$23040$ |
$0.971968$ |
$-19486825371/11662$ |
$0.90778$ |
$4.02119$ |
$[1, -1, 0, -8241, -286049]$ |
\(y^2+xy=x^3-x^2-8241x-286049\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 408.8.0.?, 2856.16.0.? |
$[(107, 167)]$ |
| 14994.cw1 |
14994bt2 |
14994.cw |
14994bt |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2 \cdot 3^{9} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$3.175355783$ |
$1$ |
|
$0$ |
$69120$ |
$1.521273$ |
$-19486825371/11662$ |
$0.90778$ |
$4.70672$ |
$[1, -1, 1, -74171, 7797493]$ |
\(y^2+xy+y=x^3-x^2-74171x+7797493\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 408.8.0.?, 2856.16.0.? |
$[(43/2, 21121/2)]$ |
| 17136.c1 |
17136r2 |
17136.c |
17136r |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{13} \cdot 3^{9} \cdot 7^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1.174683732$ |
$1$ |
|
$4$ |
$34560$ |
$1.241465$ |
$-19486825371/11662$ |
$0.90778$ |
$4.29783$ |
$[0, 0, 0, -24219, 1451466]$ |
\(y^2=x^3-24219x+1451466\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 2856.16.0.? |
$[(87, 54)]$ |
| 17136.bp1 |
17136o1 |
17136.bp |
17136o |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{13} \cdot 3^{3} \cdot 7^{3} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.692160$ |
$-19486825371/11662$ |
$0.90778$ |
$3.62169$ |
$[0, 0, 0, -2691, -53758]$ |
\(y^2=x^3-2691x-53758\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 2856.16.0.? |
$[ ]$ |
| 36414.c1 |
36414f1 |
36414.c |
36414f |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2 \cdot 3^{3} \cdot 7^{3} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$0.970734921$ |
$1$ |
|
$4$ |
$138240$ |
$1.415619$ |
$-19486825371/11662$ |
$0.90778$ |
$4.18836$ |
$[1, -1, 0, -48606, 4138918]$ |
\(y^2+xy=x^3-x^2-48606x+4138918\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 168.8.0.?, 2856.16.0.? |
$[(149, 359)]$ |
| 36414.cx1 |
36414bu2 |
36414.cx |
36414bu |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2 \cdot 3^{9} \cdot 7^{3} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$414720$ |
$1.964926$ |
$-19486825371/11662$ |
$0.90778$ |
$4.81598$ |
$[1, -1, 1, -437456, -111313331]$ |
\(y^2+xy+y=x^3-x^2-437456x-111313331\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 168.8.0.?, 2856.16.0.? |
$[ ]$ |
| 53550.f1 |
53550b2 |
53550.f |
53550b |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2 \cdot 3^{9} \cdot 5^{6} \cdot 7^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$9.599659304$ |
$1$ |
|
$0$ |
$155520$ |
$1.353037$ |
$-19486825371/11662$ |
$0.90778$ |
$3.97104$ |
$[1, -1, 0, -37842, -2825434]$ |
\(y^2+xy=x^3-x^2-37842x-2825434\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 2856.8.0.?, 14280.16.0.? |
$[(63133/11, 14188529/11)]$ |
| 53550.dk1 |
53550cq1 |
53550.dk |
53550cq |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2 \cdot 3^{3} \cdot 5^{6} \cdot 7^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$3.468055810$ |
$1$ |
|
$0$ |
$51840$ |
$0.803731$ |
$-19486825371/11662$ |
$0.90778$ |
$3.36566$ |
$[1, -1, 1, -4205, 106047]$ |
\(y^2+xy+y=x^3-x^2-4205x+106047\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 2856.8.0.?, 14280.16.0.? |
$[(155/2, -51/2)]$ |
| 68544.h1 |
68544cv1 |
68544.h |
68544cv |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{19} \cdot 3^{3} \cdot 7^{3} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$92160$ |
$1.038733$ |
$-19486825371/11662$ |
$0.90778$ |
$3.54429$ |
$[0, 0, 0, -10764, -430064]$ |
\(y^2=x^3-10764x-430064\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 714.8.0.?, 2856.16.0.? |
$[ ]$ |
| 68544.k1 |
68544q1 |
68544.k |
68544q |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{19} \cdot 3^{3} \cdot 7^{3} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$0.334633053$ |
$1$ |
|
$20$ |
$92160$ |
$1.038733$ |
$-19486825371/11662$ |
$0.90778$ |
$3.54429$ |
$[0, 0, 0, -10764, 430064]$ |
\(y^2=x^3-10764x+430064\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 1428.8.0.?, 2856.16.0.? |
$[(-2, 672), (62, 32)]$ |
| 68544.em1 |
68544da2 |
68544.em |
68544da |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{19} \cdot 3^{9} \cdot 7^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1.414127816$ |
$1$ |
|
$2$ |
$276480$ |
$1.588039$ |
$-19486825371/11662$ |
$0.90778$ |
$4.13626$ |
$[0, 0, 0, -96876, 11611728]$ |
\(y^2=x^3-96876x+11611728\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 714.8.0.?, 2856.16.0.? |
$[(282, 2592)]$ |
| 68544.ex1 |
68544w2 |
68544.ex |
68544w |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{19} \cdot 3^{9} \cdot 7^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$5.366642274$ |
$1$ |
|
$2$ |
$276480$ |
$1.588039$ |
$-19486825371/11662$ |
$0.90778$ |
$4.13626$ |
$[0, 0, 0, -96876, -11611728]$ |
\(y^2=x^3-96876x-11611728\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 1428.8.0.?, 2856.16.0.? |
$[(933, 26649)]$ |
| 119952.k1 |
119952di1 |
119952.k |
119952di |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{13} \cdot 3^{3} \cdot 7^{9} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$0.515458661$ |
$1$ |
|
$18$ |
$552960$ |
$1.665115$ |
$-19486825371/11662$ |
$0.90778$ |
$4.01742$ |
$[0, 0, 0, -131859, 18438994]$ |
\(y^2=x^3-131859x+18438994\) |
3.4.0.a.1, 84.8.0.?, 408.8.0.?, 2856.16.0.? |
$[(287, 2058), (161, 1176)]$ |
| 119952.gr1 |
119952ct2 |
119952.gr |
119952ct |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{13} \cdot 3^{9} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$8.037460841$ |
$1$ |
|
$2$ |
$1658880$ |
$2.214420$ |
$-19486825371/11662$ |
$0.90778$ |
$4.58106$ |
$[0, 0, 0, -1186731, -497852838]$ |
\(y^2=x^3-1186731x-497852838\) |
3.4.0.a.1, 84.8.0.?, 408.8.0.?, 2856.16.0.? |
$[(483798, 336507696)]$ |
| 254898.di1 |
254898di1 |
254898.di |
254898di |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3^{3} \cdot 7^{9} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6635520$ |
$2.388573$ |
$-19486825371/11662$ |
$0.90778$ |
$4.47155$ |
$[1, -1, 0, -2381703, -1414885473]$ |
\(y^2+xy=x^3-x^2-2381703x-1414885473\) |
3.4.0.a.1, 24.8.0-3.a.1.7, 357.8.0.?, 2856.16.0.? |
$[ ]$ |
| 254898.er1 |
254898er2 |
254898.er |
254898er |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3^{9} \cdot 7^{9} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$3.331428403$ |
$1$ |
|
$0$ |
$19906560$ |
$2.937881$ |
$-19486825371/11662$ |
$0.90778$ |
$5.00106$ |
$[1, -1, 1, -21435329, 38223343099]$ |
\(y^2+xy+y=x^3-x^2-21435329x+38223343099\) |
3.4.0.a.1, 24.8.0-3.a.1.8, 357.8.0.?, 2856.16.0.? |
$[(181729/8, 7302115/8)]$ |
| 259182.i1 |
259182i2 |
259182.i |
259182i |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 17 \) |
\( - 2 \cdot 3^{9} \cdot 7^{3} \cdot 11^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$31416$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1944000$ |
$1.747267$ |
$-19486825371/11662$ |
$0.90778$ |
$3.84820$ |
$[1, -1, 0, -183156, 30231746]$ |
\(y^2+xy=x^3-x^2-183156x+30231746\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 2856.8.0.?, 31416.16.0.? |
$[ ]$ |
| 259182.fw1 |
259182fw1 |
259182.fw |
259182fw |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 17 \) |
\( - 2 \cdot 3^{3} \cdot 7^{3} \cdot 11^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$31416$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$648000$ |
$1.197960$ |
$-19486825371/11662$ |
$0.90778$ |
$3.31940$ |
$[1, -1, 1, -20351, -1112911]$ |
\(y^2+xy+y=x^3-x^2-20351x-1112911\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 2856.8.0.?, 31416.16.0.? |
$[ ]$ |
| 291312.z1 |
291312z1 |
291312.z |
291312z |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 7^{3} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1.886907514$ |
$1$ |
|
$2$ |
$3317760$ |
$2.108765$ |
$-19486825371/11662$ |
$0.90778$ |
$4.15723$ |
$[0, 0, 0, -777699, -264113054]$ |
\(y^2=x^3-777699x-264113054\) |
3.4.0.a.1, 168.8.0.?, 204.8.0.?, 2856.16.0.? |
$[(2873, 145656)]$ |
| 291312.fq1 |
291312fq2 |
291312.fq |
291312fq |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 7^{3} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1.102014509$ |
$1$ |
|
$4$ |
$9953280$ |
$2.658073$ |
$-19486825371/11662$ |
$0.90778$ |
$4.68112$ |
$[0, 0, 0, -6999291, 7131052458]$ |
\(y^2=x^3-6999291x+7131052458\) |
3.4.0.a.1, 168.8.0.?, 204.8.0.?, 2856.16.0.? |
$[(-2193, 109242)]$ |
| 361998.bt1 |
361998bt2 |
361998.bt |
361998bt |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 3^{9} \cdot 7^{3} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$37128$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$2954880$ |
$1.830793$ |
$-19486825371/11662$ |
$0.90778$ |
$3.82606$ |
$[1, -1, 0, -255813, -49762153]$ |
\(y^2+xy=x^3-x^2-255813x-49762153\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 2856.8.0.?, 37128.16.0.? |
$[ ]$ |
| 361998.ch1 |
361998ch1 |
361998.ch |
361998ch |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 3^{3} \cdot 7^{3} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$37128$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$984960$ |
$1.281487$ |
$-19486825371/11662$ |
$0.90778$ |
$3.31106$ |
$[1, -1, 1, -28424, 1852517]$ |
\(y^2+xy+y=x^3-x^2-28424x+1852517\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 2856.8.0.?, 37128.16.0.? |
$[ ]$ |
| 374850.cd1 |
374850cd2 |
374850.cd |
374850cd |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2 \cdot 3^{9} \cdot 5^{6} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$2.276291020$ |
$1$ |
|
$2$ |
$7464960$ |
$2.325993$ |
$-19486825371/11662$ |
$0.90778$ |
$4.27867$ |
$[1, -1, 0, -1854267, 972832391]$ |
\(y^2+xy=x^3-x^2-1854267x+972832391\) |
3.4.0.a.1, 105.8.0.?, 2040.8.0.?, 2856.8.0.?, 14280.16.0.? |
$[(-467, 41908)]$ |
| 374850.od1 |
374850od1 |
374850.od |
374850od |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2 \cdot 3^{3} \cdot 5^{6} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$17.04617115$ |
$1$ |
|
$0$ |
$2488320$ |
$1.776686$ |
$-19486825371/11662$ |
$0.90778$ |
$3.76507$ |
$[1, -1, 1, -206030, -35962153]$ |
\(y^2+xy+y=x^3-x^2-206030x-35962153\) |
3.4.0.a.1, 105.8.0.?, 2040.8.0.?, 2856.8.0.?, 14280.16.0.? |
$[(1215313905/632, 41476587377843/632)]$ |
| 428400.je1 |
428400je1 |
428400.je |
428400je |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{6} \cdot 7^{3} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1244160$ |
$1.496878$ |
$-19486825371/11662$ |
$0.90778$ |
$3.46737$ |
$[0, 0, 0, -67275, -6719750]$ |
\(y^2=x^3-67275x-6719750\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 2856.8.0.?, 14280.16.0.? |
$[ ]$ |
| 428400.mu1 |
428400mu2 |
428400.mu |
428400mu |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{6} \cdot 7^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14280$ |
$16$ |
$0$ |
$0.873324913$ |
$1$ |
|
$4$ |
$3732480$ |
$2.046185$ |
$-19486825371/11662$ |
$0.90778$ |
$3.97569$ |
$[0, 0, 0, -605475, 181433250]$ |
\(y^2=x^3-605475x+181433250\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 2856.8.0.?, 14280.16.0.? |
$[(489, 1512)]$ |
| 479808.bc1 |
479808bc2 |
479808.bc |
479808bc |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{19} \cdot 3^{9} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$3.462346921$ |
$1$ |
|
$2$ |
$13271040$ |
$2.560993$ |
$-19486825371/11662$ |
$0.90778$ |
$4.41350$ |
$[0, 0, 0, -4746924, -3982822704]$ |
\(y^2=x^3-4746924x-3982822704\) |
3.4.0.a.1, 102.8.0.?, 168.8.0.?, 2856.16.0.? |
$[(7882, 669536)]$ |
| 479808.ck1 |
479808ck2 |
479808.ck |
479808ck |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{19} \cdot 3^{9} \cdot 7^{9} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13271040$ |
$2.560993$ |
$-19486825371/11662$ |
$0.90778$ |
$4.41350$ |
$[0, 0, 0, -4746924, 3982822704]$ |
\(y^2=x^3-4746924x+3982822704\) |
3.4.0.a.1, 168.8.0.?, 204.8.0.?, 2856.16.0.? |
$[ ]$ |
| 479808.qb1 |
479808qb1 |
479808.qb |
479808qb |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{19} \cdot 3^{3} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$8.504579600$ |
$1$ |
|
$0$ |
$4423680$ |
$2.011688$ |
$-19486825371/11662$ |
$0.90778$ |
$3.90960$ |
$[0, 0, 0, -527436, -147511952]$ |
\(y^2=x^3-527436x-147511952\) |
3.4.0.a.1, 168.8.0.?, 204.8.0.?, 2856.16.0.? |
$[(43198/3, 8868896/3)]$ |
| 479808.rk1 |
479808rk1 |
479808.rk |
479808rk |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{19} \cdot 3^{3} \cdot 7^{9} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4423680$ |
$2.011688$ |
$-19486825371/11662$ |
$0.90778$ |
$3.90960$ |
$[0, 0, 0, -527436, 147511952]$ |
\(y^2=x^3-527436x+147511952\) |
3.4.0.a.1, 102.8.0.?, 168.8.0.?, 2856.16.0.? |
$[ ]$ |