Learn more

Refine search


Results (40 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
2450.j2 2450.j \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.340266838$ $[1, -1, 0, -2, 6]$ \(y^2+xy=x^3-x^2-2x+6\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(-1, 3)]$
2450.k2 2450.k \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -107, -1849]$ \(y^2+xy=x^3-x^2-107x-1849\) 13.14.0.a.1, 40.2.0.a.1, 65.56.0-65.a.1.2, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
2450.ba2 2450.ba \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.563993430$ $[1, -1, 1, -2680, -233803]$ \(y^2+xy+y=x^3-x^2-2680x-233803\) 13.14.0.a.1, 40.2.0.a.1, 65.56.0-65.a.1.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(1229/4, 3635/4)]$
2450.bb2 2450.bb \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -55, 697]$ \(y^2+xy+y=x^3-x^2-55x+697\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
19600.bx2 19600.bx \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $1.028612802$ $[0, 0, 0, -35, -350]$ \(y^2=x^3-35x-350\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(25, 120), (9, 8)]$
19600.by2 19600.by \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.653703947$ $[0, 0, 0, -42875, 15006250]$ \(y^2=x^3-42875x+15006250\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(-150, 4250)]$
19600.bz2 19600.bz \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -875, -43750]$ \(y^2=x^3-875x-43750\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
19600.ca2 19600.ca \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.310416875$ $[0, 0, 0, -1715, 120050]$ \(y^2=x^3-1715x+120050\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(49, 392)]$
22050.j2 22050.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.824199306$ $[1, -1, 0, -24117, 6336791]$ \(y^2+xy=x^3-x^2-24117x+6336791\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(919, 27103)]$
22050.r2 22050.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -492, -18334]$ \(y^2+xy=x^3-x^2-492x-18334\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
22050.dh2 22050.dh \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.910327775$ $[1, -1, 1, -20, -143]$ \(y^2+xy+y=x^3-x^2-20x-143\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(31/2, 55/2)]$
22050.dl2 22050.dl \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -965, 50887]$ \(y^2+xy+y=x^3-x^2-965x+50887\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
78400.fd2 78400.fd \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.885034717$ $[0, 0, 0, -3500, 350000]$ \(y^2=x^3-3500x+350000\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(100, 1000)]$
78400.fe2 78400.fe \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -6860, -960400]$ \(y^2=x^3-6860x-960400\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
78400.ff2 78400.ff \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.596393674$ $[0, 0, 0, -140, 2800]$ \(y^2=x^3-140x+2800\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(30, 160)]$
78400.fg2 78400.fg \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -171500, -120050000]$ \(y^2=x^3-171500x-120050000\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
78400.gi2 78400.gi \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.956664367$ $[0, 0, 0, -6860, 960400]$ \(y^2=x^3-6860x+960400\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(0, 980)]$
78400.gj2 78400.gj \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -3500, -350000]$ \(y^2=x^3-3500x-350000\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
78400.gk2 78400.gk \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $4.221005564$ $[0, 0, 0, -171500, 120050000]$ \(y^2=x^3-171500x+120050000\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(-950/3, 316000/3)]$
78400.gl2 78400.gl \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -140, -2800]$ \(y^2=x^3-140x-2800\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
176400.qa2 176400.qa \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.931096713$ $[0, 0, 0, -315, 9450]$ \(y^2=x^3-315x+9450\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(15, 90)]$
176400.qb2 176400.qb \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -385875, -405168750]$ \(y^2=x^3-385875x-405168750\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
176400.qz2 176400.qz \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.121793891$ $[0, 0, 0, -7875, 1181250]$ \(y^2=x^3-7875x+1181250\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(25, 1000)]$
176400.ra2 176400.ra \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -15435, -3241350]$ \(y^2=x^3-15435x-3241350\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
296450.cd2 296450.cd \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -6617, -908209]$ \(y^2+xy=x^3-x^2-6617x-908209\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
296450.de2 296450.de \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $16.18250605$ $[1, -1, 0, -324242, 312164166]$ \(y^2+xy=x^3-x^2-324242x+312164166\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(-58973059/308, 492017557961/308)]$
296450.hu2 296450.hu \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -12970, 2499907]$ \(y^2+xy+y=x^3-x^2-12970x+2499907\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
296450.iu2 296450.iu \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $13.05977909$ $[1, -1, 1, -265, -7213]$ \(y^2+xy+y=x^3-x^2-265x-7213\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(751181/148, 436222145/148)]$
414050.bn2 414050.bn \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -452867, -515023209]$ \(y^2+xy=x^3-x^2-452867x-515023209\) 13.14.0.a.1, 40.2.0.a.1, 65.56.0-65.a.1.3, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
414050.bo2 414050.bo \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.542771313$ $[1, -1, 0, -9242, 1504166]$ \(y^2+xy=x^3-x^2-9242x+1504166\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(319, 5403)]$
414050.fq2 414050.fq \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -370, 12107]$ \(y^2+xy+y=x^3-x^2-370x+12107\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
414050.fr2 414050.fr \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $11.29109590$ $[1, -1, 1, -18115, -4116563]$ \(y^2+xy+y=x^3-x^2-18115x-4116563\) 13.14.0.a.1, 40.2.0.a.1, 65.56.0-65.a.1.4, 91.42.0.?, 104.28.0.?, $\ldots$ $[(2099101/52, 2925415225/52)]$
705600.jp2 705600.jp \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $2.580510721$ $[0, 0, 0, -61740, -25930800]$ \(y^2=x^3-61740x-25930800\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(490, 7840), (2940, 158760)]$
705600.jq2 705600.jq \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.354805240$ $[0, 0, 0, -31500, 9450000]$ \(y^2=x^3-31500x+9450000\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(-75, 3375)]$
705600.lv2 705600.lv \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1543500, -3241350000]$ \(y^2=x^3-1543500x-3241350000\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
705600.lw2 705600.lw \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.870961815$ $[0, 0, 0, -1260, 75600]$ \(y^2=x^3-1260x+75600\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(-6, 288)]$
705600.bra2 705600.bra \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -31500, -9450000]$ \(y^2=x^3-31500x-9450000\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
705600.brb2 705600.brb \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.527273482$ $[0, 0, 0, -61740, 25930800]$ \(y^2=x^3-61740x+25930800\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(120, 4500)]$
705600.btg2 705600.btg \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1260, -75600]$ \(y^2=x^3-1260x-75600\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[ ]$
705600.bth2 705600.bth \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.186992927$ $[0, 0, 0, -1543500, 3241350000]$ \(y^2=x^3-1543500x+3241350000\) 13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ $[(-1650, 36000)]$
  displayed columns for results