| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 2450.j2 |
2450o1 |
2450.j |
2450o |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$0.340266838$ |
$1$ |
|
$4$ |
$144$ |
$-0.533442$ |
$-189/2$ |
$0.91737$ |
$2.16832$ |
$[1, -1, 0, -2, 6]$ |
\(y^2+xy=x^3-x^2-2x+6\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(-1, 3)]$ |
$1$ |
| 2450.k2 |
2450l1 |
2450.k |
2450l |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1008$ |
$0.439513$ |
$-189/2$ |
$0.91737$ |
$3.66444$ |
$[1, -1, 0, -107, -1849]$ |
\(y^2+xy=x^3-x^2-107x-1849\) |
13.14.0.a.1, 40.2.0.a.1, 65.56.0-65.a.1.2, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 2450.ba2 |
2450bb1 |
2450.ba |
2450bb |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$2.563993430$ |
$1$ |
|
$0$ |
$5040$ |
$1.244232$ |
$-189/2$ |
$0.91737$ |
$4.90186$ |
$[1, -1, 1, -2680, -233803]$ |
\(y^2+xy+y=x^3-x^2-2680x-233803\) |
13.14.0.a.1, 40.2.0.a.1, 65.56.0-65.a.1.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(1229/4, 3635/4)]$ |
$1$ |
| 2450.bb2 |
2450be1 |
2450.bb |
2450be |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$720$ |
$0.271277$ |
$-189/2$ |
$0.91737$ |
$3.40574$ |
$[1, -1, 1, -55, 697]$ |
\(y^2+xy+y=x^3-x^2-55x+697\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 19600.bx2 |
19600dp1 |
19600.bx |
19600dp |
$2$ |
$13$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 5^{3} \cdot 7^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1.028612802$ |
$1$ |
|
$14$ |
$3456$ |
$0.159705$ |
$-189/2$ |
$0.91737$ |
$2.55371$ |
$[0, 0, 0, -35, -350]$ |
\(y^2=x^3-35x-350\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(25, 120), (9, 8)]$ |
$1$ |
| 19600.by2 |
19600df1 |
19600.by |
19600df |
$2$ |
$13$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 5^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$3.653703947$ |
$1$ |
|
$2$ |
$120960$ |
$1.937380$ |
$-189/2$ |
$0.91737$ |
$4.71211$ |
$[0, 0, 0, -42875, 15006250]$ |
\(y^2=x^3-42875x+15006250\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(-150, 4250)]$ |
$1$ |
| 19600.bz2 |
19600do1 |
19600.bz |
19600do |
$2$ |
$13$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$17280$ |
$0.964424$ |
$-189/2$ |
$0.91737$ |
$3.53077$ |
$[0, 0, 0, -875, -43750]$ |
\(y^2=x^3-875x-43750\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 19600.ca2 |
19600de1 |
19600.ca |
19600de |
$2$ |
$13$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 5^{3} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$0.310416875$ |
$1$ |
|
$6$ |
$24192$ |
$1.132660$ |
$-189/2$ |
$0.91737$ |
$3.73504$ |
$[0, 0, 0, -1715, 120050]$ |
\(y^2=x^3-1715x+120050\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(49, 392)]$ |
$1$ |
| 22050.j2 |
22050cb1 |
22050.j |
22050cb |
$2$ |
$13$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$0.824199306$ |
$1$ |
|
$4$ |
$161280$ |
$1.793537$ |
$-189/2$ |
$0.91737$ |
$4.48402$ |
$[1, -1, 0, -24117, 6336791]$ |
\(y^2+xy=x^3-x^2-24117x+6336791\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(919, 27103)]$ |
$1$ |
| 22050.r2 |
22050cq1 |
22050.r |
22050cq |
$2$ |
$13$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$23040$ |
$0.820583$ |
$-189/2$ |
$0.91737$ |
$3.31660$ |
$[1, -1, 0, -492, -18334]$ |
\(y^2+xy=x^3-x^2-492x-18334\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 22050.dh2 |
22050fr1 |
22050.dh |
22050fr |
$2$ |
$13$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$1.910327775$ |
$1$ |
|
$0$ |
$4608$ |
$0.015864$ |
$-189/2$ |
$0.91737$ |
$2.35104$ |
$[1, -1, 1, -20, -143]$ |
\(y^2+xy+y=x^3-x^2-20x-143\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(31/2, 55/2)]$ |
$1$ |
| 22050.dl2 |
22050fb1 |
22050.dl |
22050fb |
$2$ |
$13$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$32256$ |
$0.988819$ |
$-189/2$ |
$0.91737$ |
$3.51846$ |
$[1, -1, 1, -965, 50887]$ |
\(y^2+xy+y=x^3-x^2-965x+50887\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 78400.fd2 |
78400ee1 |
78400.fd |
78400ee |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 5^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1.885034717$ |
$1$ |
|
$2$ |
$138240$ |
$1.310997$ |
$-189/2$ |
$0.91737$ |
$3.46548$ |
$[0, 0, 0, -3500, 350000]$ |
\(y^2=x^3-3500x+350000\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(100, 1000)]$ |
$1$ |
| 78400.fe2 |
78400do1 |
78400.fe |
78400do |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$193536$ |
$1.479233$ |
$-189/2$ |
$0.91737$ |
$3.64462$ |
$[0, 0, 0, -6860, -960400]$ |
\(y^2=x^3-6860x-960400\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 78400.ff2 |
78400ed1 |
78400.ff |
78400ed |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$0.596393674$ |
$1$ |
|
$4$ |
$27648$ |
$0.506279$ |
$-189/2$ |
$0.91737$ |
$2.60861$ |
$[0, 0, 0, -140, 2800]$ |
\(y^2=x^3-140x+2800\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(30, 160)]$ |
$1$ |
| 78400.fg2 |
78400dn1 |
78400.fg |
78400dn |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 5^{9} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$967680$ |
$2.283951$ |
$-189/2$ |
$0.91737$ |
$4.50150$ |
$[0, 0, 0, -171500, -120050000]$ |
\(y^2=x^3-171500x-120050000\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 78400.gi2 |
78400jj1 |
78400.gi |
78400jj |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 5^{3} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$0.956664367$ |
$1$ |
|
$4$ |
$193536$ |
$1.479233$ |
$-189/2$ |
$0.91737$ |
$3.64462$ |
$[0, 0, 0, -6860, 960400]$ |
\(y^2=x^3-6860x+960400\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(0, 980)]$ |
$1$ |
| 78400.gj2 |
78400kd1 |
78400.gj |
78400kd |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$138240$ |
$1.310997$ |
$-189/2$ |
$0.91737$ |
$3.46548$ |
$[0, 0, 0, -3500, -350000]$ |
\(y^2=x^3-3500x-350000\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 78400.gk2 |
78400ji1 |
78400.gk |
78400ji |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 5^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$4.221005564$ |
$1$ |
|
$0$ |
$967680$ |
$2.283951$ |
$-189/2$ |
$0.91737$ |
$4.50150$ |
$[0, 0, 0, -171500, 120050000]$ |
\(y^2=x^3-171500x+120050000\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(-950/3, 316000/3)]$ |
$1$ |
| 78400.gl2 |
78400kc1 |
78400.gl |
78400kc |
$2$ |
$13$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 5^{3} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$0.506279$ |
$-189/2$ |
$0.91737$ |
$2.60861$ |
$[0, 0, 0, -140, -2800]$ |
\(y^2=x^3-140x-2800\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 176400.qa2 |
176400cg1 |
176400.qa |
176400cg |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$0.931096713$ |
$1$ |
|
$4$ |
$110592$ |
$0.709011$ |
$-189/2$ |
$0.91737$ |
$2.63488$ |
$[0, 0, 0, -315, 9450]$ |
\(y^2=x^3-315x+9450\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(15, 90)]$ |
$1$ |
| 176400.qb2 |
176400di1 |
176400.qb |
176400di |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{9} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$3870720$ |
$2.486687$ |
$-189/2$ |
$0.91737$ |
$4.40071$ |
$[0, 0, 0, -385875, -405168750]$ |
\(y^2=x^3-385875x-405168750\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 176400.qz2 |
176400cl1 |
176400.qz |
176400cl |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$1.121793891$ |
$1$ |
|
$4$ |
$552960$ |
$1.513731$ |
$-189/2$ |
$0.91737$ |
$3.43424$ |
$[0, 0, 0, -7875, 1181250]$ |
\(y^2=x^3-7875x+1181250\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(25, 1000)]$ |
$1$ |
| 176400.ra2 |
176400dj1 |
176400.ra |
176400dj |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$774144$ |
$1.681967$ |
$-189/2$ |
$0.91737$ |
$3.60135$ |
$[0, 0, 0, -15435, -3241350]$ |
\(y^2=x^3-15435x-3241350\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 296450.cd2 |
296450cd1 |
296450.cd |
296450cd |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2 \cdot 5^{9} \cdot 7^{2} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$40040$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$972000$ |
$1.470224$ |
$-189/2$ |
$0.91737$ |
$3.25130$ |
$[1, -1, 0, -6617, -908209]$ |
\(y^2+xy=x^3-x^2-6617x-908209\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 296450.de2 |
296450de1 |
296450.de |
296450de |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2 \cdot 5^{9} \cdot 7^{8} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$40040$ |
$336$ |
$9$ |
$16.18250605$ |
$1$ |
|
$0$ |
$6804000$ |
$2.443180$ |
$-189/2$ |
$0.91737$ |
$4.17796$ |
$[1, -1, 0, -324242, 312164166]$ |
\(y^2+xy=x^3-x^2-324242x+312164166\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(-58973059/308, 492017557961/308)]$ |
$1$ |
| 296450.hu2 |
296450hu1 |
296450.hu |
296450hu |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2 \cdot 5^{3} \cdot 7^{8} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$40040$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1360800$ |
$1.638460$ |
$-189/2$ |
$0.91737$ |
$3.41153$ |
$[1, -1, 1, -12970, 2499907]$ |
\(y^2+xy+y=x^3-x^2-12970x+2499907\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 296450.iu2 |
296450iu1 |
296450.iu |
296450iu |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2 \cdot 5^{3} \cdot 7^{2} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$40040$ |
$336$ |
$9$ |
$13.05977909$ |
$1$ |
|
$0$ |
$194400$ |
$0.665505$ |
$-189/2$ |
$0.91737$ |
$2.48488$ |
$[1, -1, 1, -265, -7213]$ |
\(y^2+xy+y=x^3-x^2-265x-7213\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(751181/148, 436222145/148)]$ |
$1$ |
| 414050.bn2 |
414050bn1 |
414050.bn |
414050bn |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 5^{9} \cdot 7^{8} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1$ |
$9$ |
$3$ |
$0$ |
$10342080$ |
$2.526707$ |
$-189/2$ |
$0.91737$ |
$4.14753$ |
$[1, -1, 0, -452867, -515023209]$ |
\(y^2+xy=x^3-x^2-452867x-515023209\) |
13.14.0.a.1, 40.2.0.a.1, 65.56.0-65.a.1.3, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 414050.bo2 |
414050bo1 |
414050.bo |
414050bo |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 5^{9} \cdot 7^{2} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$3.542771313$ |
$1$ |
|
$2$ |
$1477440$ |
$1.553751$ |
$-189/2$ |
$0.91737$ |
$3.24481$ |
$[1, -1, 0, -9242, 1504166]$ |
\(y^2+xy=x^3-x^2-9242x+1504166\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(319, 5403)]$ |
$1$ |
| 414050.fq2 |
414050fq1 |
414050.fq |
414050fq |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 5^{3} \cdot 7^{2} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$295488$ |
$0.749033$ |
$-189/2$ |
$0.91737$ |
$2.49819$ |
$[1, -1, 1, -370, 12107]$ |
\(y^2+xy+y=x^3-x^2-370x+12107\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 414050.fr2 |
414050fr1 |
414050.fr |
414050fr |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 5^{3} \cdot 7^{8} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$11.29109590$ |
$1$ |
|
$0$ |
$2068416$ |
$1.721987$ |
$-189/2$ |
$0.91737$ |
$3.40090$ |
$[1, -1, 1, -18115, -4116563]$ |
\(y^2+xy+y=x^3-x^2-18115x-4116563\) |
13.14.0.a.1, 40.2.0.a.1, 65.56.0-65.a.1.4, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(2099101/52, 2925415225/52)]$ |
$1$ |
| 705600.jp2 |
- |
705600.jp |
- |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{3} \cdot 7^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$2.580510721$ |
$1$ |
|
$10$ |
$6193152$ |
$2.028542$ |
$-189/2$ |
$0.91737$ |
$3.53945$ |
$[0, 0, 0, -61740, -25930800]$ |
\(y^2=x^3-61740x-25930800\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(490, 7840), (2940, 158760)]$ |
|
| 705600.jq2 |
- |
705600.jq |
- |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$2.354805240$ |
$1$ |
|
$2$ |
$4423680$ |
$1.860304$ |
$-189/2$ |
$0.91737$ |
$3.38953$ |
$[0, 0, 0, -31500, 9450000]$ |
\(y^2=x^3-31500x+9450000\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(-75, 3375)]$ |
|
| 705600.lv2 |
- |
705600.lv |
- |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{9} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$30965760$ |
$2.833260$ |
$-189/2$ |
$0.91737$ |
$4.25652$ |
$[0, 0, 0, -1543500, -3241350000]$ |
\(y^2=x^3-1543500x-3241350000\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
|
| 705600.lw2 |
- |
705600.lw |
- |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$0.870961815$ |
$1$ |
|
$4$ |
$884736$ |
$1.055584$ |
$-189/2$ |
$0.91737$ |
$2.67247$ |
$[0, 0, 0, -1260, 75600]$ |
\(y^2=x^3-1260x+75600\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(-6, 288)]$ |
|
| 705600.bra2 |
- |
705600.bra |
- |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$4423680$ |
$1.860304$ |
$-189/2$ |
$0.91737$ |
$3.38953$ |
$[0, 0, 0, -31500, -9450000]$ |
\(y^2=x^3-31500x-9450000\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
|
| 705600.brb2 |
- |
705600.brb |
- |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{3} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$3.527273482$ |
$1$ |
|
$2$ |
$6193152$ |
$2.028542$ |
$-189/2$ |
$0.91737$ |
$3.53945$ |
$[0, 0, 0, -61740, 25930800]$ |
\(y^2=x^3-61740x+25930800\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(120, 4500)]$ |
|
| 705600.btg2 |
- |
705600.btg |
- |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$884736$ |
$1.055584$ |
$-189/2$ |
$0.91737$ |
$2.67247$ |
$[0, 0, 0, -1260, -75600]$ |
\(y^2=x^3-1260x-75600\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[ ]$ |
|
| 705600.bth2 |
- |
705600.bth |
- |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$10920$ |
$336$ |
$9$ |
$2.186992927$ |
$1$ |
|
$4$ |
$30965760$ |
$2.833260$ |
$-189/2$ |
$0.91737$ |
$4.25652$ |
$[0, 0, 0, -1543500, 3241350000]$ |
\(y^2=x^3-1543500x+3241350000\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(-1650, 36000)]$ |
|