| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 14300.f1 |
14300k1 |
14300.f |
14300k |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 5^{4} \cdot 11 \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1368$ |
$-0.120965$ |
$-172800/143$ |
$0.65675$ |
$2.31585$ |
$[0, 0, 0, -25, -75]$ |
\(y^2=x^3-25x-75\) |
286.2.0.? |
$[ ]$ |
| 14300.h1 |
14300h1 |
14300.h |
14300h |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 5^{10} \cdot 11 \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6840$ |
$0.683754$ |
$-172800/143$ |
$0.65675$ |
$3.32511$ |
$[0, 0, 0, -625, -9375]$ |
\(y^2=x^3-625x-9375\) |
286.2.0.? |
$[ ]$ |
| 57200.z1 |
57200bh1 |
57200.z |
57200bh |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 5^{10} \cdot 11 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$4.960097051$ |
$1$ |
|
$2$ |
$27360$ |
$0.683754$ |
$-172800/143$ |
$0.65675$ |
$2.90431$ |
$[0, 0, 0, -625, 9375]$ |
\(y^2=x^3-625x+9375\) |
286.2.0.? |
$[(134, 1527)]$ |
| 57200.bh1 |
57200cb1 |
57200.bh |
57200cb |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 5^{4} \cdot 11 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$2.226813654$ |
$1$ |
|
$2$ |
$5472$ |
$-0.120965$ |
$-172800/143$ |
$0.65675$ |
$2.02278$ |
$[0, 0, 0, -25, 75]$ |
\(y^2=x^3-25x+75\) |
286.2.0.? |
$[(-6, 3)]$ |
| 128700.t1 |
128700bh1 |
128700.t |
128700bh |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{4} \cdot 11 \cdot 13 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$0.231919376$ |
$1$ |
|
$20$ |
$43776$ |
$0.428341$ |
$-172800/143$ |
$0.65675$ |
$2.44362$ |
$[0, 0, 0, -225, 2025]$ |
\(y^2=x^3-225x+2025\) |
286.2.0.? |
$[(15, 45), (-15, 45)]$ |
| 128700.bi1 |
128700l1 |
128700.bi |
128700l |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{10} \cdot 11 \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$218880$ |
$1.233059$ |
$-172800/143$ |
$0.65675$ |
$3.26440$ |
$[0, 0, 0, -5625, 253125]$ |
\(y^2=x^3-5625x+253125\) |
286.2.0.? |
$[ ]$ |
| 157300.p1 |
157300s1 |
157300.p |
157300s |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
\( - 2^{4} \cdot 5^{10} \cdot 11^{7} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$4.225323668$ |
$1$ |
|
$2$ |
$820800$ |
$1.882702$ |
$-172800/143$ |
$0.65675$ |
$3.86115$ |
$[0, 0, 0, -75625, 12478125]$ |
\(y^2=x^3-75625x+12478125\) |
286.2.0.? |
$[(1276, 44649)]$ |
| 157300.r1 |
157300m1 |
157300.r |
157300m |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
\( - 2^{4} \cdot 5^{4} \cdot 11^{7} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$0.867968483$ |
$1$ |
|
$2$ |
$164160$ |
$1.077982$ |
$-172800/143$ |
$0.65675$ |
$3.05413$ |
$[0, 0, 0, -3025, 99825]$ |
\(y^2=x^3-3025x+99825\) |
286.2.0.? |
$[(-11, 363)]$ |
| 185900.q1 |
185900t1 |
185900.q |
185900t |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 11 \cdot 13^{2} \) |
\( - 2^{4} \cdot 5^{10} \cdot 11 \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1149120$ |
$1.966228$ |
$-172800/143$ |
$0.65675$ |
$3.89059$ |
$[0, 0, 0, -105625, -20596875]$ |
\(y^2=x^3-105625x-20596875\) |
286.2.0.? |
$[ ]$ |
| 185900.s1 |
185900n1 |
185900.s |
185900n |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 11 \cdot 13^{2} \) |
\( - 2^{4} \cdot 5^{4} \cdot 11 \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$0.723699814$ |
$1$ |
|
$2$ |
$229824$ |
$1.161509$ |
$-172800/143$ |
$0.65675$ |
$3.09469$ |
$[0, 0, 0, -4225, -164775]$ |
\(y^2=x^3-4225x-164775\) |
286.2.0.? |
$[(195, 2535)]$ |
| 228800.ct1 |
228800er1 |
228800.ct |
228800er |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{10} \cdot 5^{4} \cdot 11 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$3.309633367$ |
$1$ |
|
$2$ |
$43776$ |
$0.225608$ |
$-172800/143$ |
$0.65675$ |
$2.13255$ |
$[0, 0, 0, -100, -600]$ |
\(y^2=x^3-100x-600\) |
286.2.0.? |
$[(21, 81)]$ |
| 228800.cu1 |
228800cb1 |
228800.cu |
228800cb |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{10} \cdot 5^{10} \cdot 11 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$8.399028476$ |
$1$ |
|
$0$ |
$218880$ |
$1.030327$ |
$-172800/143$ |
$0.65675$ |
$2.91506$ |
$[0, 0, 0, -2500, 75000]$ |
\(y^2=x^3-2500x+75000\) |
286.2.0.? |
$[(3621/7, 185919/7)]$ |
| 228800.dq1 |
228800fd1 |
228800.dq |
228800fd |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{10} \cdot 5^{10} \cdot 11 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$19.62349316$ |
$1$ |
|
$0$ |
$218880$ |
$1.030327$ |
$-172800/143$ |
$0.65675$ |
$2.91506$ |
$[0, 0, 0, -2500, -75000]$ |
\(y^2=x^3-2500x-75000\) |
286.2.0.? |
$[(241303421/1693, 2707102925781/1693)]$ |
| 228800.dt1 |
228800bt1 |
228800.dt |
228800bt |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{10} \cdot 5^{4} \cdot 11 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$1.340058737$ |
$1$ |
|
$2$ |
$43776$ |
$0.225608$ |
$-172800/143$ |
$0.65675$ |
$2.13255$ |
$[0, 0, 0, -100, 600]$ |
\(y^2=x^3-100x+600\) |
286.2.0.? |
$[(5, 15)]$ |