| Label | Cremona label | Class | Cremona class | Class size | Class degree | Conductor | Discriminant | Rank | Torsion | $\textrm{End}^0(E_{\overline\Q})$ | CM | Sato-Tate | Semistable | Potentially good | Nonmax $\ell$ | $\ell$-adic images | mod-$\ell$ images | Adelic level | Adelic index | Adelic genus | Regulator | $Ш_{\textrm{an}}$ | Ш primes | Integral points | Modular degree | Faltings height | j-invariant | $abc$ quality | Szpiro ratio | Weierstrass coefficients | Weierstrass equation | mod-$m$ images | MW-generators | 
      
      
              | 16872.b1 | 16872a1 | 16872.b | 16872a | $1$ | $1$ | \(  2^{3} \cdot 3 \cdot 19 \cdot 37  \) | \(  - 2^{8} \cdot 3^{8} \cdot 19 \cdot 37^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $38$ | $2$ | $0$ | $1$ | $4$ | $2$ | $0$ | $10314240$ | $3.666660$ | $-166962959078001445737309395968/599433319281236638491$ | $1.08685$ | $7.48276$ | $[0, 1, 0, -728414857, -7567136868421]$ | \(y^2=x^3+x^2-728414857x-7567136868421\) | 38.2.0.a.1 | $[ ]$ | 
      
              | 33744.b1 | 33744e1 | 33744.b | 33744e | $1$ | $1$ | \(  2^{4} \cdot 3 \cdot 19 \cdot 37  \) | \(  - 2^{8} \cdot 3^{8} \cdot 19 \cdot 37^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $38$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $20628480$ | $3.666660$ | $-166962959078001445737309395968/599433319281236638491$ | $1.08685$ | $6.98531$ | $[0, -1, 0, -728414857, 7567136868421]$ | \(y^2=x^3-x^2-728414857x+7567136868421\) | 38.2.0.a.1 | $[ ]$ | 
      
              | 50616.i1 | 50616g1 | 50616.i | 50616g | $1$ | $1$ | \(  2^{3} \cdot 3^{2} \cdot 19 \cdot 37  \) | \(  - 2^{8} \cdot 3^{14} \cdot 19 \cdot 37^{10}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $38$ | $2$ | $0$ | $21.48389153$ | $1$ |  | $0$ | $82513920$ | $4.215965$ | $-166962959078001445737309395968/599433319281236638491$ | $1.08685$ | $7.33237$ | $[0, 0, 0, -6555733716, 204306139713652]$ | \(y^2=x^3-6555733716x+204306139713652\) | 38.2.0.a.1 | $[(46405816049369/40430, 423525331424600374653/40430)]$ | 
      
              | 101232.be1 | 101232h1 | 101232.be | 101232h | $1$ | $1$ | \(  2^{4} \cdot 3^{2} \cdot 19 \cdot 37  \) | \(  - 2^{8} \cdot 3^{14} \cdot 19 \cdot 37^{10}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $38$ | $2$ | $0$ | $229.1367897$ | $1$ |  | $0$ | $165027840$ | $4.215965$ | $-166962959078001445737309395968/599433319281236638491$ | $1.08685$ | $6.89139$ | $[0, 0, 0, -6555733716, -204306139713652]$ | \(y^2=x^3-6555733716x-204306139713652\) | 38.2.0.a.1 | $[(73064426122946472718872653974418795027852445068639329863121565024939373750501458602793078256947948804617/13330072183634636946028031796216777830783917579504, 611373841544964919912476830879539537068891963958224359917086975610809222477636645120762635715043192551261816671492212634880824723826367066309607770711184667/13330072183634636946028031796216777830783917579504)]$ | 
      
              | 134976.v1 | 134976bs1 | 134976.v | 134976bs | $1$ | $1$ | \(  2^{6} \cdot 3 \cdot 19 \cdot 37  \) | \(  - 2^{14} \cdot 3^{8} \cdot 19 \cdot 37^{10}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $38$ | $2$ | $0$ | $46.40144681$ | $1$ |  | $0$ | $165027840$ | $4.013237$ | $-166962959078001445737309395968/599433319281236638491$ | $1.08685$ | $6.51762$ | $[0, -1, 0, -2913659429, -60534181287939]$ | \(y^2=x^3-x^2-2913659429x-60534181287939\) | 38.2.0.a.1 | $[(28284599709899743010660/385848773, 4538906283487277351004455307167217/385848773)]$ | 
      
              | 134976.bp1 | 134976l1 | 134976.bp | 134976l | $1$ | $1$ | \(  2^{6} \cdot 3 \cdot 19 \cdot 37  \) | \(  - 2^{14} \cdot 3^{8} \cdot 19 \cdot 37^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $38$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $165027840$ | $4.013237$ | $-166962959078001445737309395968/599433319281236638491$ | $1.08685$ | $6.51762$ | $[0, 1, 0, -2913659429, 60534181287939]$ | \(y^2=x^3+x^2-2913659429x+60534181287939\) | 38.2.0.a.1 | $[ ]$ | 
      
              | 320568.c1 | 320568c1 | 320568.c | 320568c | $1$ | $1$ | \(  2^{3} \cdot 3 \cdot 19^{2} \cdot 37  \) | \(  - 2^{8} \cdot 3^{8} \cdot 19^{7} \cdot 37^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $38$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $3713126400$ | $5.138878$ | $-166962959078001445737309395968/599433319281236638491$ | $1.08685$ | $7.13839$ | $[0, -1, 0, -262957763497, 51901414033918909]$ | \(y^2=x^3-x^2-262957763497x+51901414033918909\) | 38.2.0.a.1 | $[ ]$ | 
      
              | 404928.i1 | 404928i1 | 404928.i | 404928i | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 19 \cdot 37  \) | \(  - 2^{14} \cdot 3^{14} \cdot 19 \cdot 37^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $38$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $1320222720$ | $4.562538$ | $-166962959078001445737309395968/599433319281236638491$ | $1.08685$ | $6.47357$ | $[0, 0, 0, -26222934864, -1634449117709216]$ | \(y^2=x^3-26222934864x-1634449117709216\) | 38.2.0.a.1 | $[ ]$ | 
      
              | 404928.r1 | 404928r1 | 404928.r | 404928r | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 19 \cdot 37  \) | \(  - 2^{14} \cdot 3^{14} \cdot 19 \cdot 37^{10}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $38$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $1320222720$ | $4.562538$ | $-166962959078001445737309395968/599433319281236638491$ | $1.08685$ | $6.47357$ | $[0, 0, 0, -26222934864, 1634449117709216]$ | \(y^2=x^3-26222934864x+1634449117709216\) | 38.2.0.a.1 | $[ ]$ | 
      
              | 421800.a1 | 421800a1 | 421800.a | 421800a | $1$ | $1$ | \(  2^{3} \cdot 3 \cdot 5^{2} \cdot 19 \cdot 37  \) | \(  - 2^{8} \cdot 3^{8} \cdot 5^{6} \cdot 19 \cdot 37^{10}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $38$ | $2$ | $0$ | $14.05289040$ | $1$ |  | $0$ | $1113937920$ | $4.471382$ | $-166962959078001445737309395968/599433319281236638491$ | $1.08685$ | $6.36871$ | $[0, -1, 0, -18210371433, -945855687809763]$ | \(y^2=x^3-x^2-18210371433x-945855687809763\) | 38.2.0.a.1 | $[(444443559/43, 7358090969574/43)]$ |