Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
23800.b1 |
23800d1 |
23800.b |
23800d |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1.162919365$ |
$1$ |
|
$10$ |
$3648$ |
$-0.184617$ |
$-160000/2023$ |
$0.80201$ |
$2.09411$ |
$[0, 1, 0, -8, -47]$ |
\(y^2=x^3+x^2-8x-47\) |
14.2.0.a.1 |
$[(7, 17), (24, 119)]$ |
23800.l1 |
23800k1 |
23800.l |
23800k |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{4} \cdot 5^{8} \cdot 7 \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18240$ |
$0.620102$ |
$-160000/2023$ |
$0.80201$ |
$3.05235$ |
$[0, -1, 0, -208, -5463]$ |
\(y^2=x^3-x^2-208x-5463\) |
14.2.0.a.1 |
$[ ]$ |
47600.g1 |
47600m1 |
47600.g |
47600m |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{4} \cdot 5^{8} \cdot 7 \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$36480$ |
$0.620102$ |
$-160000/2023$ |
$0.80201$ |
$2.85592$ |
$[0, 1, 0, -208, 5463]$ |
\(y^2=x^3+x^2-208x+5463\) |
14.2.0.a.1 |
$[ ]$ |
47600.bm1 |
47600b1 |
47600.bm |
47600b |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1.837866020$ |
$1$ |
|
$0$ |
$7296$ |
$-0.184617$ |
$-160000/2023$ |
$0.80201$ |
$1.95934$ |
$[0, -1, 0, -8, 47]$ |
\(y^2=x^3-x^2-8x+47\) |
14.2.0.a.1 |
$[(-11/2, 51/2)]$ |
166600.f1 |
166600b1 |
166600.f |
166600b |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{8} \cdot 7^{7} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$0.423371665$ |
$1$ |
|
$16$ |
$875520$ |
$1.593058$ |
$-160000/2023$ |
$0.80201$ |
$3.52941$ |
$[0, 1, 0, -10208, 1894213]$ |
\(y^2=x^3+x^2-10208x+1894213\) |
14.2.0.a.1 |
$[(58, 1225), (-138, 833)]$ |
166600.bh1 |
166600bl1 |
166600.bh |
166600bl |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{7} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1.505204506$ |
$1$ |
|
$2$ |
$175104$ |
$0.788338$ |
$-160000/2023$ |
$0.80201$ |
$2.72626$ |
$[0, -1, 0, -408, 15317]$ |
\(y^2=x^3-x^2-408x+15317\) |
14.2.0.a.1 |
$[(26, 147)]$ |
190400.f1 |
190400l1 |
190400.f |
190400l |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{10} \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$2.473213620$ |
$1$ |
|
$6$ |
$58368$ |
$0.161957$ |
$-160000/2023$ |
$0.80201$ |
$2.07801$ |
$[0, 1, 0, -33, 343]$ |
\(y^2=x^3+x^2-33x+343\) |
14.2.0.a.1 |
$[(2, 17), (-6, 19)]$ |
190400.s1 |
190400cn1 |
190400.s |
190400cn |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{10} \cdot 5^{8} \cdot 7 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$2.281500570$ |
$1$ |
|
$2$ |
$291840$ |
$0.966676$ |
$-160000/2023$ |
$0.80201$ |
$2.87235$ |
$[0, 1, 0, -833, -44537]$ |
\(y^2=x^3+x^2-833x-44537\) |
14.2.0.a.1 |
$[(58, 325)]$ |
190400.ec1 |
190400bv1 |
190400.ec |
190400bv |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{10} \cdot 5^{8} \cdot 7 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1.912231862$ |
$1$ |
|
$2$ |
$291840$ |
$0.966676$ |
$-160000/2023$ |
$0.80201$ |
$2.87235$ |
$[0, -1, 0, -833, 44537]$ |
\(y^2=x^3-x^2-833x+44537\) |
14.2.0.a.1 |
$[(-8, 225)]$ |
190400.er1 |
190400er1 |
190400.er |
190400er |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{10} \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$58368$ |
$0.161957$ |
$-160000/2023$ |
$0.80201$ |
$2.07801$ |
$[0, -1, 0, -33, -343]$ |
\(y^2=x^3-x^2-33x-343\) |
14.2.0.a.1 |
$[ ]$ |
214200.cc1 |
214200dg1 |
214200.cc |
214200dg |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{8} \cdot 7 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$0.594791383$ |
$1$ |
|
$4$ |
$437760$ |
$1.169409$ |
$-160000/2023$ |
$0.80201$ |
$3.04298$ |
$[0, 0, 0, -1875, 149375]$ |
\(y^2=x^3-1875x+149375\) |
14.2.0.a.1 |
$[(-25, 425)]$ |
214200.ev1 |
214200bk1 |
214200.ev |
214200bk |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$0.703913891$ |
$1$ |
|
$4$ |
$87552$ |
$0.364689$ |
$-160000/2023$ |
$0.80201$ |
$2.25627$ |
$[0, 0, 0, -75, 1195]$ |
\(y^2=x^3-75x+1195\) |
14.2.0.a.1 |
$[(29, 153)]$ |
333200.bf1 |
333200bf1 |
333200.bf |
333200bf |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{7} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1.578167642$ |
$1$ |
|
$2$ |
$350208$ |
$0.788338$ |
$-160000/2023$ |
$0.80201$ |
$2.57765$ |
$[0, 1, 0, -408, -15317]$ |
\(y^2=x^3+x^2-408x-15317\) |
14.2.0.a.1 |
$[(37, 147)]$ |
333200.gk1 |
333200gk1 |
333200.gk |
333200gk |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{8} \cdot 7^{7} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$4.714429526$ |
$1$ |
|
$0$ |
$1751040$ |
$1.593058$ |
$-160000/2023$ |
$0.80201$ |
$3.33703$ |
$[0, -1, 0, -10208, -1894213]$ |
\(y^2=x^3-x^2-10208x-1894213\) |
14.2.0.a.1 |
$[(2497/4, 34425/4)]$ |
404600.l1 |
404600l1 |
404600.l |
404600l |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{4} \cdot 5^{8} \cdot 7 \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5253120$ |
$2.036709$ |
$-160000/2023$ |
$0.80201$ |
$3.69921$ |
$[0, 1, 0, -60208, -27200787]$ |
\(y^2=x^3+x^2-60208x-27200787\) |
14.2.0.a.1 |
$[ ]$ |
404600.bq1 |
404600bq1 |
404600.bq |
404600bq |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{4} \cdot 5^{2} \cdot 7 \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$9.229647393$ |
$1$ |
|
$0$ |
$1050624$ |
$1.231989$ |
$-160000/2023$ |
$0.80201$ |
$2.95125$ |
$[0, -1, 0, -2408, -216643]$ |
\(y^2=x^3-x^2-2408x-216643\) |
14.2.0.a.1 |
$[(9166/11, 230157/11)]$ |
428400.l1 |
428400l1 |
428400.l |
428400l |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$2.361455919$ |
$1$ |
|
$2$ |
$175104$ |
$0.364689$ |
$-160000/2023$ |
$0.80201$ |
$2.13567$ |
$[0, 0, 0, -75, -1195]$ |
\(y^2=x^3-75x-1195\) |
14.2.0.a.1 |
$[(124, 1377)]$ |
428400.ic1 |
428400ic1 |
428400.ic |
428400ic |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{8} \cdot 7 \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$875520$ |
$1.169409$ |
$-160000/2023$ |
$0.80201$ |
$2.88033$ |
$[0, 0, 0, -1875, -149375]$ |
\(y^2=x^3-1875x-149375\) |
14.2.0.a.1 |
$[ ]$ |