Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2040.m1 |
2040q1 |
2040.m |
2040q |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.020721385$ |
$1$ |
|
$18$ |
$3360$ |
$1.038479$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.74635$ |
$[0, 1, 0, -2840, 81813]$ |
\(y^2=x^3+x^2-2840x+81813\) |
510.2.0.? |
$[(346, 6375)]$ |
4080.p1 |
4080j1 |
4080.p |
4080j |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.530731877$ |
$1$ |
|
$4$ |
$6720$ |
$1.038479$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.35064$ |
$[0, -1, 0, -2840, -81813]$ |
\(y^2=x^3-x^2-2840x-81813\) |
510.2.0.? |
$[(79, 425)]$ |
6120.c1 |
6120f1 |
6120.c |
6120f |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{7} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$26880$ |
$1.587786$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.90431$ |
$[0, 0, 0, -25563, -2234513]$ |
\(y^2=x^3-25563x-2234513\) |
510.2.0.? |
$[ ]$ |
10200.t1 |
10200b1 |
10200.t |
10200b |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{13} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.552537768$ |
$1$ |
|
$2$ |
$80640$ |
$1.843199$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.96495$ |
$[0, -1, 0, -71008, 10368637]$ |
\(y^2=x^3-x^2-71008x+10368637\) |
510.2.0.? |
$[(482, 9375)]$ |
12240.x1 |
12240k1 |
12240.x |
12240k |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{7} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$53760$ |
$1.587786$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.54315$ |
$[0, 0, 0, -25563, 2234513]$ |
\(y^2=x^3-25563x+2234513\) |
510.2.0.? |
$[ ]$ |
16320.e1 |
16320i1 |
16320.e |
16320i |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{7} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$53760$ |
$1.385054$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.15761$ |
$[0, -1, 0, -11361, 665865]$ |
\(y^2=x^3-x^2-11361x+665865\) |
510.2.0.? |
$[ ]$ |
16320.cf1 |
16320cp1 |
16320.cf |
16320cp |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{7} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$53760$ |
$1.385054$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.15761$ |
$[0, 1, 0, -11361, -665865]$ |
\(y^2=x^3+x^2-11361x-665865\) |
510.2.0.? |
$[ ]$ |
20400.cj1 |
20400x1 |
20400.cj |
20400x |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{13} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$161280$ |
$1.843199$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.61814$ |
$[0, 1, 0, -71008, -10368637]$ |
\(y^2=x^3+x^2-71008x-10368637\) |
510.2.0.? |
$[ ]$ |
30600.cm1 |
30600cm1 |
30600.cm |
30600cm |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{13} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$645120$ |
$2.392506$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$5.07504$ |
$[0, 0, 0, -639075, -279314125]$ |
\(y^2=x^3-639075x-279314125\) |
510.2.0.? |
$[ ]$ |
34680.j1 |
34680bf1 |
34680.j |
34680bf |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$967680$ |
$2.455086$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$5.08611$ |
$[0, -1, 0, -820856, 406872225]$ |
\(y^2=x^3-x^2-820856x+406872225\) |
510.2.0.? |
$[ ]$ |
48960.ds1 |
48960cu1 |
48960.ds |
48960cu |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{11} \cdot 5^{7} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.621836860$ |
$1$ |
|
$2$ |
$430080$ |
$1.934359$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.34505$ |
$[0, 0, 0, -102252, -17876104]$ |
\(y^2=x^3-102252x-17876104\) |
510.2.0.? |
$[(397, 2025)]$ |
48960.fo1 |
48960fj1 |
48960.fo |
48960fj |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{10} \cdot 3^{11} \cdot 5^{7} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$430080$ |
$1.934359$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.34505$ |
$[0, 0, 0, -102252, 17876104]$ |
\(y^2=x^3-102252x+17876104\) |
510.2.0.? |
$[ ]$ |
61200.bh1 |
61200by1 |
61200.bh |
61200by |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{13} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$2.403433888$ |
$1$ |
|
$2$ |
$1290240$ |
$2.392506$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.75588$ |
$[0, 0, 0, -639075, 279314125]$ |
\(y^2=x^3-639075x+279314125\) |
510.2.0.? |
$[(860, 19125)]$ |
69360.cb1 |
69360be1 |
69360.cb |
69360be |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1935360$ |
$2.455086$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.76985$ |
$[0, 1, 0, -820856, -406872225]$ |
\(y^2=x^3+x^2-820856x-406872225\) |
510.2.0.? |
$[ ]$ |
81600.u1 |
81600fr1 |
81600.u |
81600fr |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{13} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1290240$ |
$2.189774$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.41980$ |
$[0, -1, 0, -284033, -82665063]$ |
\(y^2=x^3-x^2-284033x-82665063\) |
510.2.0.? |
$[ ]$ |
81600.jd1 |
81600cz1 |
81600.jd |
81600cz |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{13} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1290240$ |
$2.189774$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.41980$ |
$[0, 1, 0, -284033, 82665063]$ |
\(y^2=x^3+x^2-284033x+82665063\) |
510.2.0.? |
$[ ]$ |
99960.l1 |
99960bz1 |
99960.l |
99960bz |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$23.32608786$ |
$1$ |
|
$0$ |
$1108800$ |
$2.011433$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.15600$ |
$[0, -1, 0, -139176, -28340199]$ |
\(y^2=x^3-x^2-139176x-28340199\) |
510.2.0.? |
$[(13476001868/4909, 978324423753041/4909)]$ |
104040.cw1 |
104040be1 |
104040.cw |
104040be |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{7} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.600138918$ |
$1$ |
|
$4$ |
$7741440$ |
$3.004391$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$5.17302$ |
$[0, 0, 0, -7387707, -10978162369]$ |
\(y^2=x^3-7387707x-10978162369\) |
510.2.0.? |
$[(20587, 2926125)]$ |
173400.cu1 |
173400de1 |
173400.cu |
173400de |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{13} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$23224320$ |
$3.259804$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$5.20804$ |
$[0, 1, 0, -20521408, 50817985313]$ |
\(y^2=x^3+x^2-20521408x+50817985313\) |
510.2.0.? |
$[ ]$ |
199920.fd1 |
199920fx1 |
199920.fd |
199920fx |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$6.108767480$ |
$1$ |
|
$2$ |
$2217600$ |
$2.011433$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$3.91998$ |
$[0, 1, 0, -139176, 28340199]$ |
\(y^2=x^3+x^2-139176x+28340199\) |
510.2.0.? |
$[(17, 5097)]$ |
208080.ef1 |
208080em1 |
208080.ef |
208080em |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{7} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.730847810$ |
$1$ |
|
$2$ |
$15482880$ |
$3.004391$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.88021$ |
$[0, 0, 0, -7387707, 10978162369]$ |
\(y^2=x^3-7387707x+10978162369\) |
510.2.0.? |
$[(1088, 65025)]$ |
244800.da1 |
244800da1 |
244800.da |
244800da |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{11} \cdot 5^{13} \cdot 17^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.793501305$ |
$1$ |
|
$8$ |
$10321920$ |
$2.739079$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.55971$ |
$[0, 0, 0, -2556300, 2234513000]$ |
\(y^2=x^3-2556300x+2234513000\) |
510.2.0.? |
$[(-235, 53125), (445, 34425)]$ |
244800.qd1 |
244800qd1 |
244800.qd |
244800qd |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{11} \cdot 5^{13} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$5.709749020$ |
$1$ |
|
$0$ |
$10321920$ |
$2.739079$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.55971$ |
$[0, 0, 0, -2556300, -2234513000]$ |
\(y^2=x^3-2556300x-2234513000\) |
510.2.0.? |
$[(117765/7, 25446875/7)]$ |
246840.cp1 |
246840cp1 |
246840.cp |
246840cp |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 11^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4804800$ |
$2.237427$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.07183$ |
$[0, 1, 0, -343680, -110267775]$ |
\(y^2=x^3+x^2-343680x-110267775\) |
510.2.0.? |
$[ ]$ |
277440.cv1 |
277440cv1 |
277440.cv |
277440cv |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{7} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$4.297070996$ |
$1$ |
|
$0$ |
$15482880$ |
$2.801659$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.57409$ |
$[0, -1, 0, -3283425, -3251694375]$ |
\(y^2=x^3-x^2-3283425x-3251694375\) |
510.2.0.? |
$[(109400/7, 7983625/7)]$ |
277440.jg1 |
277440jg1 |
277440.jg |
277440jg |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{7} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.739781724$ |
$1$ |
|
$2$ |
$15482880$ |
$2.801659$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.57409$ |
$[0, 1, 0, -3283425, 3251694375]$ |
\(y^2=x^3+x^2-3283425x+3251694375\) |
510.2.0.? |
$[(-1230, 73695)]$ |
299880.eb1 |
299880eb1 |
299880.eb |
299880eb |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{7} \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.351379949$ |
$1$ |
|
$6$ |
$8870400$ |
$2.560741$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.31663$ |
$[0, 0, 0, -1252587, 766437959]$ |
\(y^2=x^3-1252587x+766437959\) |
510.2.0.? |
$[(-377, 34425)]$ |
344760.bz1 |
344760bz1 |
344760.bz |
344760bz |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 13^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.966432151$ |
$1$ |
|
$4$ |
$6451200$ |
$2.320953$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.04375$ |
$[0, 1, 0, -480016, 181663145]$ |
\(y^2=x^3+x^2-480016x+181663145\) |
510.2.0.? |
$[(524, 8619)]$ |
346800.fe1 |
346800fe1 |
346800.fe |
346800fe |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{13} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$65.63601486$ |
$1$ |
|
$0$ |
$46448640$ |
$3.259804$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.92505$ |
$[0, -1, 0, -20521408, -50817985313]$ |
\(y^2=x^3-x^2-20521408x-50817985313\) |
510.2.0.? |
$[(2647232490758445004380246686787/5151927954859, 4302554283582011904245853971966004058505199575/5151927954859)]$ |
493680.cj1 |
493680cj1 |
493680.cj |
493680cj |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 11^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$4.154828745$ |
$1$ |
|
$2$ |
$9609600$ |
$2.237427$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$3.85654$ |
$[0, -1, 0, -343680, 110267775]$ |
\(y^2=x^3-x^2-343680x+110267775\) |
510.2.0.? |
$[(-565, 11125)]$ |
499800.gn1 |
499800gn1 |
499800.gn |
499800gn |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{13} \cdot 7^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$26611200$ |
$2.816154$ |
$-158384129218816/93270234375$ |
$0.97776$ |
$4.38217$ |
$[0, 1, 0, -3479408, -3549483687]$ |
\(y^2=x^3+x^2-3479408x-3549483687\) |
510.2.0.? |
$[ ]$ |