Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
19950.e1 |
19950p1 |
19950.e |
19950p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$3.940887124$ |
$1$ |
|
$2$ |
$153216$ |
$1.685432$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$4.39711$ |
$[1, 1, 0, -12105, -3294675]$ |
\(y^2+xy=x^3+x^2-12105x-3294675\) |
5320.2.0.? |
$[(495, 10350)]$ |
19950.cr1 |
19950de1 |
19950.cr |
19950de |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{9} \cdot 7 \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$766080$ |
$2.490150$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$5.37243$ |
$[1, 0, 0, -302638, -411229108]$ |
\(y^2+xy=x^3-302638x-411229108\) |
5320.2.0.? |
$[ ]$ |
59850.bq1 |
59850cs1 |
59850.bq |
59850cs |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( - 2^{3} \cdot 3^{12} \cdot 5^{9} \cdot 7 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$12.94979619$ |
$1$ |
|
$0$ |
$6128640$ |
$3.039459$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$5.43511$ |
$[1, -1, 0, -2723742, 11103185916]$ |
\(y^2+xy=x^3-x^2-2723742x+11103185916\) |
5320.2.0.? |
$[(12169311/38, 41796580341/38)]$ |
59850.gp1 |
59850gm1 |
59850.gp |
59850gm |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( - 2^{3} \cdot 3^{12} \cdot 5^{3} \cdot 7 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$4.460490452$ |
$1$ |
|
$2$ |
$1225728$ |
$2.234741$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$4.55720$ |
$[1, -1, 1, -108950, 88847277]$ |
\(y^2+xy+y=x^3-x^2-108950x+88847277\) |
5320.2.0.? |
$[(599, 15135)]$ |
139650.cm1 |
139650fi1 |
139650.cm |
139650fi |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{3} \cdot 7^{7} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$0.222065093$ |
$1$ |
|
$8$ |
$7354368$ |
$2.658390$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$4.66039$ |
$[1, 0, 1, -593171, 1128294038]$ |
\(y^2+xy+y=x^3-593171x+1128294038\) |
5320.2.0.? |
$[(2622, 131356)]$ |
139650.ep1 |
139650cw1 |
139650.ep |
139650cw |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{9} \cdot 7^{7} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$0.424026610$ |
$1$ |
|
$6$ |
$36771840$ |
$3.463108$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$5.47551$ |
$[1, 1, 1, -14829263, 141036754781]$ |
\(y^2+xy+y=x^3+x^2-14829263x+141036754781\) |
5320.2.0.? |
$[(5529, 474838)]$ |
159600.dc1 |
159600dh1 |
159600.dc |
159600dh |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{9} \cdot 7 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$1.561068444$ |
$1$ |
|
$0$ |
$18385920$ |
$3.183300$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$5.13422$ |
$[0, -1, 0, -4842208, 26318662912]$ |
\(y^2=x^3-x^2-4842208x+26318662912\) |
5320.2.0.? |
$[(2893/2, 1218375/2)]$ |
159600.fg1 |
159600v1 |
159600.fg |
159600v |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$0.164903265$ |
$1$ |
|
$6$ |
$3677184$ |
$2.378582$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$4.32818$ |
$[0, 1, 0, -193688, 210471828]$ |
\(y^2=x^3+x^2-193688x+210471828\) |
5320.2.0.? |
$[(358, 13680)]$ |
379050.c1 |
379050c1 |
379050.c |
379050c |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{9} \cdot 7 \cdot 19^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$7.566134092$ |
$1$ |
|
$0$ |
$275788800$ |
$3.962372$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$5.51628$ |
$[1, 1, 0, -109252325, 2820401947125]$ |
\(y^2+xy=x^3+x^2-109252325x+2820401947125\) |
5320.2.0.? |
$[(1695215/7, 2175567185/7)]$ |
379050.iw1 |
379050iw1 |
379050.iw |
379050iw |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 19^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$55157760$ |
$3.157654$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$4.76453$ |
$[1, 0, 0, -4370093, 22563215577]$ |
\(y^2+xy=x^3-4370093x+22563215577\) |
5320.2.0.? |
$[ ]$ |
418950.ie1 |
418950ie1 |
418950.ie |
418950ie |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{3} \cdot 3^{12} \cdot 5^{9} \cdot 7^{7} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$3.265525877$ |
$1$ |
|
$2$ |
$294174720$ |
$4.012413$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$5.52002$ |
$[1, -1, 0, -133463367, -3808125842459]$ |
\(y^2+xy=x^3-x^2-133463367x-3808125842459\) |
5320.2.0.? |
$[(213369, 98288378)]$ |
418950.ql1 |
418950ql1 |
418950.ql |
418950ql |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{3} \cdot 3^{12} \cdot 5^{3} \cdot 7^{7} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$58834944$ |
$3.207695$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$4.77408$ |
$[1, -1, 1, -5338535, -30463939033]$ |
\(y^2+xy+y=x^3-x^2-5338535x-30463939033\) |
5320.2.0.? |
$[ ]$ |
478800.r1 |
478800r1 |
478800.r |
478800r |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( - 2^{15} \cdot 3^{12} \cdot 5^{3} \cdot 7 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$2.128148619$ |
$1$ |
|
$2$ |
$29417472$ |
$2.927887$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$4.46861$ |
$[0, 0, 0, -1743195, -5684482550]$ |
\(y^2=x^3-1743195x-5684482550\) |
5320.2.0.? |
$[(6335, 487350)]$ |
478800.ij1 |
478800ij1 |
478800.ij |
478800ij |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( - 2^{15} \cdot 3^{12} \cdot 5^{9} \cdot 7 \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$147087360$ |
$3.732605$ |
$-1569510182075597/36491419872936$ |
$1.00529$ |
$5.20694$ |
$[0, 0, 0, -43579875, -710560318750]$ |
\(y^2=x^3-43579875x-710560318750\) |
5320.2.0.? |
$[ ]$ |