Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
194040.bj1 |
194040cb1 |
194040.bj |
194040cb |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{4} \cdot 7^{8} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9332736$ |
$2.763718$ |
$-1548577548/12179481875$ |
$1.11141$ |
$4.63808$ |
$[0, 0, 0, -130683, 2119886118]$ |
\(y^2=x^3-130683x+2119886118\) |
132.2.0.? |
$[ ]$ |
194040.bm1 |
194040fd1 |
194040.bm |
194040fd |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.680792246$ |
$1$ |
|
$4$ |
$3999744$ |
$2.340069$ |
$-1548577548/12179481875$ |
$1.11141$ |
$4.22055$ |
$[0, 0, 0, -24003, 166871502]$ |
\(y^2=x^3-24003x+166871502\) |
132.2.0.? |
$[(207, 13068)]$ |
194040.cs1 |
194040bs1 |
194040.cs |
194040bs |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{4} \cdot 7^{2} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1333248$ |
$1.790762$ |
$-1548577548/12179481875$ |
$1.11141$ |
$3.67917$ |
$[0, 0, 0, -2667, -6180426]$ |
\(y^2=x^3-2667x-6180426\) |
132.2.0.? |
$[ ]$ |
194040.fe1 |
194040fa1 |
194040.fe |
194040fa |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{4} \cdot 7^{8} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.642198669$ |
$1$ |
|
$4$ |
$27998208$ |
$3.313023$ |
$-1548577548/12179481875$ |
$1.11141$ |
$5.17945$ |
$[0, 0, 0, -1176147, -57236925186]$ |
\(y^2=x^3-1176147x-57236925186\) |
132.2.0.? |
$[(12103, 1304380)]$ |
388080.h1 |
388080h1 |
388080.h |
388080h |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7999488$ |
$2.340069$ |
$-1548577548/12179481875$ |
$1.11141$ |
$3.99322$ |
$[0, 0, 0, -24003, -166871502]$ |
\(y^2=x^3-24003x-166871502\) |
132.2.0.? |
$[ ]$ |
388080.hl1 |
388080hl1 |
388080.hl |
388080hl |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{4} \cdot 7^{8} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18665472$ |
$2.763718$ |
$-1548577548/12179481875$ |
$1.11141$ |
$4.38826$ |
$[0, 0, 0, -130683, -2119886118]$ |
\(y^2=x^3-130683x-2119886118\) |
132.2.0.? |
$[ ]$ |
388080.lj1 |
388080lj1 |
388080.lj |
388080lj |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{4} \cdot 7^{8} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$55996416$ |
$3.313023$ |
$-1548577548/12179481875$ |
$1.11141$ |
$4.90048$ |
$[0, 0, 0, -1176147, 57236925186]$ |
\(y^2=x^3-1176147x+57236925186\) |
132.2.0.? |
$[ ]$ |
388080.lx1 |
388080lx1 |
388080.lx |
388080lx |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{4} \cdot 7^{2} \cdot 11^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.457528138$ |
$1$ |
|
$14$ |
$2666496$ |
$1.790762$ |
$-1548577548/12179481875$ |
$1.11141$ |
$3.48101$ |
$[0, 0, 0, -2667, 6180426]$ |
\(y^2=x^3-2667x+6180426\) |
132.2.0.? |
$[(-173, 1210), (267, 4950)]$ |