Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2072.b1 |
2072d1 |
2072.b |
2072d |
$1$ |
$1$ |
\( 2^{3} \cdot 7 \cdot 37 \) |
\( - 2^{8} \cdot 7^{7} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4032$ |
$1.373537$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.60685$ |
$[0, 0, 0, -32828, 2294756]$ |
\(y^2=x^3-32828x+2294756\) |
518.2.0.? |
$[ ]$ |
4144.c1 |
4144b1 |
4144.c |
4144b |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 37 \) |
\( - 2^{8} \cdot 7^{7} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8064$ |
$1.373537$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.14027$ |
$[0, 0, 0, -32828, -2294756]$ |
\(y^2=x^3-32828x-2294756\) |
518.2.0.? |
$[ ]$ |
14504.e1 |
14504g1 |
14504.e |
14504g |
$1$ |
$1$ |
\( 2^{3} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 7^{13} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$9.682117784$ |
$1$ |
|
$0$ |
$193536$ |
$2.346493$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.68669$ |
$[0, 0, 0, -1608572, -787101308]$ |
\(y^2=x^3-1608572x-787101308\) |
518.2.0.? |
$[(2322033/38, 1536815273/38)]$ |
16576.m1 |
16576b1 |
16576.m |
16576b |
$1$ |
$1$ |
\( 2^{6} \cdot 7 \cdot 37 \) |
\( - 2^{14} \cdot 7^{7} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$64512$ |
$1.720110$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.83488$ |
$[0, 0, 0, -131312, 18358048]$ |
\(y^2=x^3-131312x+18358048\) |
518.2.0.? |
$[ ]$ |
16576.n1 |
16576o1 |
16576.n |
16576o |
$1$ |
$1$ |
\( 2^{6} \cdot 7 \cdot 37 \) |
\( - 2^{14} \cdot 7^{7} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$64512$ |
$1.720110$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.83488$ |
$[0, 0, 0, -131312, -18358048]$ |
\(y^2=x^3-131312x-18358048\) |
518.2.0.? |
$[ ]$ |
18648.s1 |
18648e1 |
18648.s |
18648e |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7 \cdot 37 \) |
\( - 2^{8} \cdot 3^{6} \cdot 7^{7} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$129024$ |
$1.922844$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.02437$ |
$[0, 0, 0, -295452, -61958412]$ |
\(y^2=x^3-295452x-61958412\) |
518.2.0.? |
$[ ]$ |
29008.j1 |
29008b1 |
29008.j |
29008b |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 7^{13} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$387072$ |
$2.346493$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.30308$ |
$[0, 0, 0, -1608572, 787101308]$ |
\(y^2=x^3-1608572x+787101308\) |
518.2.0.? |
$[ ]$ |
37296.br1 |
37296u1 |
37296.br |
37296u |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 37 \) |
\( - 2^{8} \cdot 3^{6} \cdot 7^{7} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1.178361941$ |
$1$ |
|
$2$ |
$258048$ |
$1.922844$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.69353$ |
$[0, 0, 0, -295452, 61958412]$ |
\(y^2=x^3-295452x+61958412\) |
518.2.0.? |
$[(321, 441)]$ |
51800.p1 |
51800c1 |
51800.p |
51800c |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7 \cdot 37 \) |
\( - 2^{8} \cdot 5^{6} \cdot 7^{7} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$0.225312800$ |
$1$ |
|
$6$ |
$564480$ |
$2.178257$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.83384$ |
$[0, 0, 0, -820700, 286844500]$ |
\(y^2=x^3-820700x+286844500\) |
518.2.0.? |
$[(1074, 25382)]$ |
76664.d1 |
76664a1 |
76664.d |
76664a |
$1$ |
$1$ |
\( 2^{3} \cdot 7 \cdot 37^{2} \) |
\( - 2^{8} \cdot 7^{7} \cdot 37^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$6.886476548$ |
$1$ |
|
$2$ |
$5515776$ |
$3.178997$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.73307$ |
$[0, 0, 0, -44941532, 116236275668]$ |
\(y^2=x^3-44941532x+116236275668\) |
518.2.0.? |
$[(4234, 43078)]$ |
103600.x1 |
103600g1 |
103600.x |
103600g |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 37 \) |
\( - 2^{8} \cdot 5^{6} \cdot 7^{7} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1128960$ |
$2.178257$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.54371$ |
$[0, 0, 0, -820700, -286844500]$ |
\(y^2=x^3-820700x-286844500\) |
518.2.0.? |
$[ ]$ |
116032.u1 |
116032g1 |
116032.u |
116032g |
$1$ |
$1$ |
\( 2^{6} \cdot 7^{2} \cdot 37 \) |
\( - 2^{14} \cdot 7^{13} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$4.839168762$ |
$1$ |
|
$0$ |
$3096576$ |
$2.693066$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.02930$ |
$[0, 0, 0, -6434288, -6296810464]$ |
\(y^2=x^3-6434288x-6296810464\) |
518.2.0.? |
$[(290017/2, 156086609/2)]$ |
116032.x1 |
116032bf1 |
116032.x |
116032bf |
$1$ |
$1$ |
\( 2^{6} \cdot 7^{2} \cdot 37 \) |
\( - 2^{14} \cdot 7^{13} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3096576$ |
$2.693066$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.02930$ |
$[0, 0, 0, -6434288, 6296810464]$ |
\(y^2=x^3-6434288x+6296810464\) |
518.2.0.? |
$[ ]$ |
130536.bf1 |
130536bu1 |
130536.bf |
130536bu |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{6} \cdot 7^{13} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1.159592707$ |
$1$ |
|
$4$ |
$6193152$ |
$2.895798$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.18554$ |
$[0, 0, 0, -14477148, 21251735316]$ |
\(y^2=x^3-14477148x+21251735316\) |
518.2.0.? |
$[(2590, 33614)]$ |
149184.cp1 |
149184eo1 |
149184.cp |
149184eo |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 37 \) |
\( - 2^{14} \cdot 3^{6} \cdot 7^{7} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$15.85166998$ |
$1$ |
|
$0$ |
$2064384$ |
$2.269417$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.49645$ |
$[0, 0, 0, -1181808, -495667296]$ |
\(y^2=x^3-1181808x-495667296\) |
518.2.0.? |
$[(253015017/59, 4024116879309/59)]$ |
149184.cq1 |
149184bd1 |
149184.cq |
149184bd |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 37 \) |
\( - 2^{14} \cdot 3^{6} \cdot 7^{7} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$0.359857333$ |
$1$ |
|
$4$ |
$2064384$ |
$2.269417$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.49645$ |
$[0, 0, 0, -1181808, 495667296]$ |
\(y^2=x^3-1181808x+495667296\) |
518.2.0.? |
$[(201, 16317)]$ |
153328.m1 |
153328p1 |
153328.m |
153328p |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 37^{2} \) |
\( - 2^{8} \cdot 7^{7} \cdot 37^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11031552$ |
$3.178997$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.40026$ |
$[0, 0, 0, -44941532, -116236275668]$ |
\(y^2=x^3-44941532x-116236275668\) |
518.2.0.? |
$[ ]$ |
250712.f1 |
250712f1 |
250712.f |
250712f |
$1$ |
$1$ |
\( 2^{3} \cdot 7 \cdot 11^{2} \cdot 37 \) |
\( - 2^{8} \cdot 7^{7} \cdot 11^{6} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$3.944800203$ |
$1$ |
|
$4$ |
$4798080$ |
$2.572483$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.60123$ |
$[0, 0, 0, -3972188, -3054320236]$ |
\(y^2=x^3-3972188x-3054320236\) |
518.2.0.? |
$[(2302, 686)]$ |
261072.cr1 |
261072cr1 |
261072.cr |
261072cr |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{6} \cdot 7^{13} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$53.45345407$ |
$1$ |
|
$0$ |
$12386304$ |
$2.895798$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.89736$ |
$[0, 0, 0, -14477148, -21251735316]$ |
\(y^2=x^3-14477148x-21251735316\) |
518.2.0.? |
$[(3432521044684744579366905/2031706547, 6359387055079196428417678694883755211/2031706547)]$ |
350168.e1 |
350168e1 |
350168.e |
350168e |
$1$ |
$1$ |
\( 2^{3} \cdot 7 \cdot 13^{2} \cdot 37 \) |
\( - 2^{8} \cdot 7^{7} \cdot 13^{6} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$0.450179968$ |
$1$ |
|
$6$ |
$9434880$ |
$2.656013$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.55933$ |
$[0, 0, 0, -5547932, 5041578932]$ |
\(y^2=x^3-5547932x+5041578932\) |
518.2.0.? |
$[(1342, 3626)]$ |
362600.bs1 |
362600bs1 |
362600.bs |
362600bs |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 5^{6} \cdot 7^{13} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$12.30815212$ |
$1$ |
|
$0$ |
$27095040$ |
$3.151211$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.01111$ |
$[0, 0, 0, -40214300, -98387663500]$ |
\(y^2=x^3-40214300x-98387663500\) |
518.2.0.? |
$[(3911674/23, 1126020482/23)]$ |
414400.cx1 |
414400cx1 |
414400.cx |
414400cx |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 37 \) |
\( - 2^{14} \cdot 5^{6} \cdot 7^{7} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9031680$ |
$2.524830$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.37826$ |
$[0, 0, 0, -3282800, -2294756000]$ |
\(y^2=x^3-3282800x-2294756000\) |
518.2.0.? |
$[ ]$ |
414400.cy1 |
414400cy1 |
414400.cy |
414400cy |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 37 \) |
\( - 2^{14} \cdot 5^{6} \cdot 7^{7} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9031680$ |
$2.524830$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.37826$ |
$[0, 0, 0, -3282800, 2294756000]$ |
\(y^2=x^3-3282800x+2294756000\) |
518.2.0.? |
$[ ]$ |
466200.ci1 |
466200ci1 |
466200.ci |
466200ci |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 37 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{6} \cdot 7^{7} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$2.150852558$ |
$1$ |
|
$2$ |
$18063360$ |
$2.727562$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$4.52513$ |
$[0, 0, 0, -7386300, -7744801500]$ |
\(y^2=x^3-7386300x-7744801500\) |
518.2.0.? |
$[(7656, 620046)]$ |