| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 664.a1 |
664a1 |
664.a |
664a |
$1$ |
$1$ |
\( 2^{3} \cdot 83 \) |
\( - 2^{8} \cdot 83 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$0.096676050$ |
$1$ |
|
$26$ |
$160$ |
$-0.466387$ |
$-148176/83$ |
$0.66708$ |
$2.78971$ |
$[0, 0, 0, -7, 10]$ |
\(y^2=x^3-7x+10\) |
166.2.0.? |
$[(1, 2), (3, 4)]$ |
$1$ |
| 1328.e1 |
1328c1 |
1328.e |
1328c |
$1$ |
$1$ |
\( 2^{4} \cdot 83 \) |
\( - 2^{8} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$320$ |
$-0.466387$ |
$-148176/83$ |
$0.66708$ |
$2.52082$ |
$[0, 0, 0, -7, -10]$ |
\(y^2=x^3-7x-10\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 5312.b1 |
5312l1 |
5312.b |
5312l |
$1$ |
$1$ |
\( 2^{6} \cdot 83 \) |
\( - 2^{14} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2560$ |
$-0.119813$ |
$-148176/83$ |
$0.66708$ |
$2.59826$ |
$[0, 0, 0, -28, -80]$ |
\(y^2=x^3-28x-80\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 5312.p1 |
5312g1 |
5312.p |
5312g |
$1$ |
$1$ |
\( 2^{6} \cdot 83 \) |
\( - 2^{14} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2560$ |
$-0.119813$ |
$-148176/83$ |
$0.66708$ |
$2.59826$ |
$[0, 0, 0, -28, 80]$ |
\(y^2=x^3-28x+80\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 5976.f1 |
5976e1 |
5976.f |
5976e |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 83 \) |
\( - 2^{8} \cdot 3^{6} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$2.705552430$ |
$1$ |
|
$2$ |
$2240$ |
$0.082919$ |
$-148176/83$ |
$0.66708$ |
$2.84285$ |
$[0, 0, 0, -63, -270]$ |
\(y^2=x^3-63x-270\) |
166.2.0.? |
$[(10, 10)]$ |
$1$ |
| 11952.s1 |
11952c1 |
11952.s |
11952c |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 83 \) |
\( - 2^{8} \cdot 3^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4480$ |
$0.082919$ |
$-148176/83$ |
$0.66708$ |
$2.63296$ |
$[0, 0, 0, -63, 270]$ |
\(y^2=x^3-63x+270\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 16600.o1 |
16600h1 |
16600.o |
16600h |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 83 \) |
\( - 2^{8} \cdot 5^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12800$ |
$0.338332$ |
$-148176/83$ |
$0.66708$ |
$2.85937$ |
$[0, 0, 0, -175, 1250]$ |
\(y^2=x^3-175x+1250\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 32536.h1 |
32536h1 |
32536.h |
32536h |
$1$ |
$1$ |
\( 2^{3} \cdot 7^{2} \cdot 83 \) |
\( - 2^{8} \cdot 7^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$37440$ |
$0.506568$ |
$-148176/83$ |
$0.66708$ |
$2.86848$ |
$[0, 0, 0, -343, -3430]$ |
\(y^2=x^3-343x-3430\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 33200.a1 |
33200c1 |
33200.a |
33200c |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 83 \) |
\( - 2^{8} \cdot 5^{6} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1.200947787$ |
$1$ |
|
$2$ |
$25600$ |
$0.338332$ |
$-148176/83$ |
$0.66708$ |
$2.66898$ |
$[0, 0, 0, -175, -1250]$ |
\(y^2=x^3-175x-1250\) |
166.2.0.? |
$[(25, 100)]$ |
$1$ |
| 47808.a1 |
47808s1 |
47808.a |
47808s |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 83 \) |
\( - 2^{14} \cdot 3^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$35840$ |
$0.429492$ |
$-148176/83$ |
$0.66708$ |
$2.68019$ |
$[0, 0, 0, -252, -2160]$ |
\(y^2=x^3-252x-2160\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 47808.d1 |
47808cf1 |
47808.d |
47808cf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 83 \) |
\( - 2^{14} \cdot 3^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$35840$ |
$0.429492$ |
$-148176/83$ |
$0.66708$ |
$2.68019$ |
$[0, 0, 0, -252, 2160]$ |
\(y^2=x^3-252x+2160\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 55112.a1 |
55112d1 |
55112.a |
55112d |
$1$ |
$1$ |
\( 2^{3} \cdot 83^{2} \) |
\( - 2^{8} \cdot 83^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1102080$ |
$1.743032$ |
$-148176/83$ |
$0.66708$ |
$4.08911$ |
$[0, 0, 0, -48223, -5717870]$ |
\(y^2=x^3-48223x-5717870\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 65072.a1 |
65072c1 |
65072.a |
65072c |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 83 \) |
\( - 2^{8} \cdot 7^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$74880$ |
$0.506568$ |
$-148176/83$ |
$0.66708$ |
$2.68908$ |
$[0, 0, 0, -343, 3430]$ |
\(y^2=x^3-343x+3430\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 80344.a1 |
80344d1 |
80344.a |
80344d |
$1$ |
$1$ |
\( 2^{3} \cdot 11^{2} \cdot 83 \) |
\( - 2^{8} \cdot 11^{6} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$4.478119445$ |
$1$ |
|
$2$ |
$216000$ |
$0.732560$ |
$-148176/83$ |
$0.66708$ |
$2.87900$ |
$[0, 0, 0, -847, -13310]$ |
\(y^2=x^3-847x-13310\) |
166.2.0.? |
$[(70, 520)]$ |
$1$ |
| 110224.m1 |
110224e1 |
110224.m |
110224e |
$1$ |
$1$ |
\( 2^{4} \cdot 83^{2} \) |
\( - 2^{8} \cdot 83^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$2204160$ |
$1.743032$ |
$-148176/83$ |
$0.66708$ |
$3.84499$ |
$[0, 0, 0, -48223, 5717870]$ |
\(y^2=x^3-48223x+5717870\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 112216.a1 |
112216d1 |
112216.a |
112216d |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 83 \) |
\( - 2^{8} \cdot 13^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$345600$ |
$0.816088$ |
$-148176/83$ |
$0.66708$ |
$2.88248$ |
$[0, 0, 0, -1183, 21970]$ |
\(y^2=x^3-1183x+21970\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 132800.n1 |
132800ci1 |
132800.n |
132800ci |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 83 \) |
\( - 2^{14} \cdot 5^{6} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1.173117153$ |
$1$ |
|
$2$ |
$204800$ |
$0.684905$ |
$-148176/83$ |
$0.66708$ |
$2.70788$ |
$[0, 0, 0, -700, 10000]$ |
\(y^2=x^3-700x+10000\) |
166.2.0.? |
$[(0, 100)]$ |
$1$ |
| 132800.di1 |
132800bv1 |
132800.di |
132800bv |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 83 \) |
\( - 2^{14} \cdot 5^{6} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$4.974646600$ |
$1$ |
|
$0$ |
$204800$ |
$0.684905$ |
$-148176/83$ |
$0.66708$ |
$2.70788$ |
$[0, 0, 0, -700, -10000]$ |
\(y^2=x^3-700x-10000\) |
166.2.0.? |
$[(1300/3, 46000/3)]$ |
$1$ |
| 149400.cn1 |
149400ba1 |
149400.cn |
149400ba |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 83 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{6} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$3.435183678$ |
$1$ |
|
$2$ |
$179200$ |
$0.887638$ |
$-148176/83$ |
$0.66708$ |
$2.88530$ |
$[0, 0, 0, -1575, -33750]$ |
\(y^2=x^3-1575x-33750\) |
166.2.0.? |
$[(49, 82)]$ |
$1$ |
| 160688.p1 |
160688p1 |
160688.p |
160688p |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 83 \) |
\( - 2^{8} \cdot 11^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$432000$ |
$0.732560$ |
$-148176/83$ |
$0.66708$ |
$2.71253$ |
$[0, 0, 0, -847, 13310]$ |
\(y^2=x^3-847x+13310\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 191896.h1 |
191896e1 |
191896.h |
191896e |
$1$ |
$1$ |
\( 2^{3} \cdot 17^{2} \cdot 83 \) |
\( - 2^{8} \cdot 17^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$806400$ |
$0.950220$ |
$-148176/83$ |
$0.66708$ |
$2.88766$ |
$[0, 0, 0, -2023, 49130]$ |
\(y^2=x^3-2023x+49130\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 224432.s1 |
224432s1 |
224432.s |
224432s |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 83 \) |
\( - 2^{8} \cdot 13^{6} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$9.751950259$ |
$1$ |
|
$0$ |
$691200$ |
$0.816088$ |
$-148176/83$ |
$0.66708$ |
$2.72032$ |
$[0, 0, 0, -1183, -21970]$ |
\(y^2=x^3-1183x-21970\) |
166.2.0.? |
$[(345085/69, 171666820/69)]$ |
$1$ |
| 239704.k1 |
239704k1 |
239704.k |
239704k |
$1$ |
$1$ |
\( 2^{3} \cdot 19^{2} \cdot 83 \) |
\( - 2^{8} \cdot 19^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.005833$ |
$-148176/83$ |
$0.66708$ |
$2.88968$ |
$[0, 0, 0, -2527, -68590]$ |
\(y^2=x^3-2527x-68590\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 260288.a1 |
260288a1 |
260288.a |
260288a |
$1$ |
$1$ |
\( 2^{6} \cdot 7^{2} \cdot 83 \) |
\( - 2^{14} \cdot 7^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$599040$ |
$0.853142$ |
$-148176/83$ |
$0.66708$ |
$2.72365$ |
$[0, 0, 0, -1372, -27440]$ |
\(y^2=x^3-1372x-27440\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 260288.cm1 |
260288cm1 |
260288.cm |
260288cm |
$1$ |
$1$ |
\( 2^{6} \cdot 7^{2} \cdot 83 \) |
\( - 2^{14} \cdot 7^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$599040$ |
$0.853142$ |
$-148176/83$ |
$0.66708$ |
$2.72365$ |
$[0, 0, 0, -1372, 27440]$ |
\(y^2=x^3-1372x+27440\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 292824.b1 |
292824b1 |
292824.b |
292824b |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 83 \) |
\( - 2^{8} \cdot 3^{6} \cdot 7^{6} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$4.062880121$ |
$1$ |
|
$2$ |
$524160$ |
$1.055874$ |
$-148176/83$ |
$0.66708$ |
$2.89144$ |
$[0, 0, 0, -3087, 92610]$ |
\(y^2=x^3-3087x+92610\) |
166.2.0.? |
$[(22, 188)]$ |
$1$ |
| 298800.b1 |
298800b1 |
298800.b |
298800b |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 83 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{6} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1.417763808$ |
$1$ |
|
$2$ |
$358400$ |
$0.887638$ |
$-148176/83$ |
$0.66708$ |
$2.72667$ |
$[0, 0, 0, -1575, 33750]$ |
\(y^2=x^3-1575x+33750\) |
166.2.0.? |
$[(25, 100)]$ |
$1$ |
| 351256.b1 |
351256b1 |
351256.b |
351256b |
$1$ |
$1$ |
\( 2^{3} \cdot 23^{2} \cdot 83 \) |
\( - 2^{8} \cdot 23^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2027520$ |
$1.101360$ |
$-148176/83$ |
$0.66708$ |
$2.89298$ |
$[0, 0, 0, -3703, -121670]$ |
\(y^2=x^3-3703x-121670\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 383792.b1 |
383792b1 |
383792.b |
383792b |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 83 \) |
\( - 2^{8} \cdot 17^{6} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1612800$ |
$0.950220$ |
$-148176/83$ |
$0.66708$ |
$2.73199$ |
$[0, 0, 0, -2023, -49130]$ |
\(y^2=x^3-2023x-49130\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 440896.a1 |
440896a1 |
440896.a |
440896a |
$1$ |
$1$ |
\( 2^{6} \cdot 83^{2} \) |
\( - 2^{14} \cdot 83^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1.589835082$ |
$1$ |
|
$2$ |
$17633280$ |
$2.089607$ |
$-148176/83$ |
$0.66708$ |
$3.75486$ |
$[0, 0, 0, -192892, 45742960]$ |
\(y^2=x^3-192892x+45742960\) |
166.2.0.? |
$[(2324, 110224)]$ |
$1$ |
| 440896.bh1 |
440896bh1 |
440896.bh |
440896bh |
$1$ |
$1$ |
\( 2^{6} \cdot 83^{2} \) |
\( - 2^{14} \cdot 83^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17633280$ |
$2.089607$ |
$-148176/83$ |
$0.66708$ |
$3.75486$ |
$[0, 0, 0, -192892, -45742960]$ |
\(y^2=x^3-192892x-45742960\) |
166.2.0.? |
$[ ]$ |
$1$ |
| 479408.a1 |
479408a1 |
479408.a |
479408a |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{8} \cdot 19^{6} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1.356327878$ |
$1$ |
|
$2$ |
$2211840$ |
$1.005833$ |
$-148176/83$ |
$0.66708$ |
$2.73655$ |
$[0, 0, 0, -2527, 68590]$ |
\(y^2=x^3-2527x+68590\) |
166.2.0.? |
$[(133, 1444)]$ |
$1$ |
| 496008.a1 |
496008a1 |
496008.a |
496008a |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 83^{2} \) |
\( - 2^{8} \cdot 3^{6} \cdot 83^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$6.627037126$ |
$1$ |
|
$8$ |
$15429120$ |
$2.292339$ |
$-148176/83$ |
$0.66708$ |
$3.90664$ |
$[0, 0, 0, -434007, 154382490]$ |
\(y^2=x^3-434007x+154382490\) |
166.2.0.? |
$[(-83, 13778), (6142/3, 358228/3)]$ |
$1$ |