Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
48552.b1 |
48552e1 |
48552.b |
48552e |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{7} \cdot 7^{6} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$13.85069228$ |
$1$ |
|
$0$ |
$217728$ |
$1.609402$ |
$-130098552670514/257298363$ |
$0.98992$ |
$4.24394$ |
$[0, -1, 0, -88632, -10144116]$ |
\(y^2=x^3-x^2-88632x-10144116\) |
24.2.0.b.1 |
$[(16992205/113, 68087300064/113)]$ |
48552.bc1 |
48552v1 |
48552.bc |
48552v |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{7} \cdot 7^{6} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3701376$ |
$3.026009$ |
$-130098552670514/257298363$ |
$0.98992$ |
$5.81935$ |
$[0, 1, 0, -25614744, -49991730192]$ |
\(y^2=x^3+x^2-25614744x-49991730192\) |
24.2.0.b.1 |
$[ ]$ |
97104.bj1 |
97104c1 |
97104.bj |
97104c |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{7} \cdot 7^{6} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7402752$ |
$3.026009$ |
$-130098552670514/257298363$ |
$0.98992$ |
$5.46809$ |
$[0, -1, 0, -25614744, 49991730192]$ |
\(y^2=x^3-x^2-25614744x+49991730192\) |
24.2.0.b.1 |
$[ ]$ |
97104.bu1 |
97104bd1 |
97104.bu |
97104bd |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{7} \cdot 7^{6} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.060992952$ |
$1$ |
|
$16$ |
$435456$ |
$1.609402$ |
$-130098552670514/257298363$ |
$0.98992$ |
$3.98778$ |
$[0, 1, 0, -88632, 10144116]$ |
\(y^2=x^3+x^2-88632x+10144116\) |
24.2.0.b.1 |
$[(162, 252)]$ |
145656.d1 |
145656c1 |
145656.d |
145656c |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{13} \cdot 7^{6} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$3.315464829$ |
$1$ |
|
$2$ |
$29611008$ |
$3.575314$ |
$-130098552670514/257298363$ |
$0.98992$ |
$5.83604$ |
$[0, 0, 0, -230532699, 1349546182486]$ |
\(y^2=x^3-230532699x+1349546182486\) |
24.2.0.b.1 |
$[(5822, 452466)]$ |
145656.bm1 |
145656v1 |
145656.bm |
145656v |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{13} \cdot 7^{6} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$6.388777202$ |
$1$ |
|
$0$ |
$1741824$ |
$2.158707$ |
$-130098552670514/257298363$ |
$0.98992$ |
$4.40621$ |
$[0, 0, 0, -797691, 274688822]$ |
\(y^2=x^3-797691x+274688822\) |
24.2.0.b.1 |
$[(8654/5, 790958/5)]$ |
291312.j1 |
291312j1 |
291312.j |
291312j |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{13} \cdot 7^{6} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$29.24506581$ |
$1$ |
|
$0$ |
$59222016$ |
$3.575314$ |
$-130098552670514/257298363$ |
$0.98992$ |
$5.51454$ |
$[0, 0, 0, -230532699, -1349546182486]$ |
\(y^2=x^3-230532699x-1349546182486\) |
24.2.0.b.1 |
$[(124667546729615/83669, 257156846944949403718/83669)]$ |
291312.fv1 |
291312fv1 |
291312.fv |
291312fv |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{13} \cdot 7^{6} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$3.388986980$ |
$1$ |
|
$2$ |
$3483648$ |
$2.158707$ |
$-130098552670514/257298363$ |
$0.98992$ |
$4.16347$ |
$[0, 0, 0, -797691, -274688822]$ |
\(y^2=x^3-797691x-274688822\) |
24.2.0.b.1 |
$[(15767, 1976562)]$ |
339864.g1 |
339864g1 |
339864.g |
339864g |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{7} \cdot 7^{12} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$18.49934337$ |
$1$ |
|
$0$ |
$177666048$ |
$3.998962$ |
$-130098552670514/257298363$ |
$0.98992$ |
$5.84695$ |
$[0, -1, 0, -1255122472, 17144653210924]$ |
\(y^2=x^3-x^2-1255122472x+17144653210924\) |
24.2.0.b.1 |
$[(11142621741/898, 1131107896468151/898)]$ |
339864.cx1 |
339864cx1 |
339864.cx |
339864cx |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{7} \cdot 7^{12} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$2.393938843$ |
$1$ |
|
$2$ |
$10450944$ |
$2.582355$ |
$-130098552670514/257298363$ |
$0.98992$ |
$4.51224$ |
$[0, 1, 0, -4342984, 3488117744]$ |
\(y^2=x^3+x^2-4342984x+3488117744\) |
24.2.0.b.1 |
$[(9515, 907578)]$ |
388416.o1 |
388416o1 |
388416.o |
388416o |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{17} \cdot 3^{7} \cdot 7^{6} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$2.703510751$ |
$1$ |
|
$2$ |
$59222016$ |
$3.372581$ |
$-130098552670514/257298363$ |
$0.98992$ |
$5.20224$ |
$[0, -1, 0, -102458977, -399831382559]$ |
\(y^2=x^3-x^2-102458977x-399831382559\) |
24.2.0.b.1 |
$[(16377, 1521296)]$ |
388416.ea1 |
388416ea1 |
388416.ea |
388416ea |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{17} \cdot 3^{7} \cdot 7^{6} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1.020163936$ |
$1$ |
|
$2$ |
$3483648$ |
$1.955975$ |
$-130098552670514/257298363$ |
$0.98992$ |
$3.88138$ |
$[0, -1, 0, -354529, 81507457]$ |
\(y^2=x^3-x^2-354529x+81507457\) |
24.2.0.b.1 |
$[(269, 2352)]$ |
388416.em1 |
388416em1 |
388416.em |
388416em |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{17} \cdot 3^{7} \cdot 7^{6} \cdot 17^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.848716756$ |
$1$ |
|
$14$ |
$59222016$ |
$3.372581$ |
$-130098552670514/257298363$ |
$0.98992$ |
$5.20224$ |
$[0, 1, 0, -102458977, 399831382559]$ |
\(y^2=x^3+x^2-102458977x+399831382559\) |
24.2.0.b.1 |
$[(6743, 124848), (-6262, 892143)]$ |
388416.ia1 |
388416ia1 |
388416.ia |
388416ia |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) |
\( - 2^{17} \cdot 3^{7} \cdot 7^{6} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3483648$ |
$1.955975$ |
$-130098552670514/257298363$ |
$0.98992$ |
$3.88138$ |
$[0, 1, 0, -354529, -81507457]$ |
\(y^2=x^3+x^2-354529x-81507457\) |
24.2.0.b.1 |
$[ ]$ |