| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 17340.h1 |
17340f1 |
17340.h |
17340f |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{4} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$102$ |
$16$ |
$0$ |
$0.221208805$ |
$1$ |
|
$8$ |
$7776$ |
$0.533927$ |
$-127157223424/16875$ |
$1.00596$ |
$3.48414$ |
$[0, -1, 0, -1745, 28650]$ |
\(y^2=x^3-x^2-1745x+28650\) |
3.4.0.a.1, 6.8.0.b.1, 51.8.0-3.a.1.2, 102.16.0.? |
$[(25, 5)]$ |
| 17340.k1 |
17340o1 |
17340.k |
17340o |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{4} \cdot 17^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$6$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$132192$ |
$1.950535$ |
$-127157223424/16875$ |
$1.00596$ |
$5.22574$ |
$[0, 1, 0, -504401, 137731224]$ |
\(y^2=x^3+x^2-504401x+137731224\) |
3.8.0-3.a.1.2, 6.16.0-6.b.1.2 |
$[ ]$ |
| 52020.n1 |
52020q1 |
52020.n |
52020q |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{4} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$102$ |
$16$ |
$0$ |
$3.806519595$ |
$1$ |
|
$0$ |
$62208$ |
$1.083233$ |
$-127157223424/16875$ |
$1.00596$ |
$3.73867$ |
$[0, 0, 0, -15708, -757843]$ |
\(y^2=x^3-15708x-757843\) |
3.4.0.a.1, 6.8.0.b.1, 51.8.0-3.a.1.1, 102.16.0.? |
$[(1249/2, 39825/2)]$ |
| 52020.z1 |
52020bj1 |
52020.z |
52020bj |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{4} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$6$ |
$16$ |
$0$ |
$16.30674427$ |
$1$ |
|
$0$ |
$1057536$ |
$2.499840$ |
$-127157223424/16875$ |
$1.00596$ |
$5.30407$ |
$[0, 0, 0, -4539612, -3723282659]$ |
\(y^2=x^3-4539612x-3723282659\) |
3.8.0-3.a.1.1, 6.16.0-6.b.1.1 |
$[(119955107/31, 1313603874990/31)]$ |
| 69360.t1 |
69360ck1 |
69360.t |
69360ck |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{4} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12$ |
$16$ |
$0$ |
$9.859285938$ |
$1$ |
|
$0$ |
$528768$ |
$1.950535$ |
$-127157223424/16875$ |
$1.00596$ |
$4.57584$ |
$[0, -1, 0, -504401, -137731224]$ |
\(y^2=x^3-x^2-504401x-137731224\) |
3.4.0.a.1, 6.8.0.b.1, 12.16.0-6.b.1.1 |
$[(3788436/31, 7243741650/31)]$ |
| 69360.dh1 |
69360dq1 |
69360.dh |
69360dq |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{4} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$204$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$31104$ |
$0.533927$ |
$-127157223424/16875$ |
$1.00596$ |
$3.05084$ |
$[0, 1, 0, -1745, -28650]$ |
\(y^2=x^3+x^2-1745x-28650\) |
3.4.0.a.1, 6.8.0.b.1, 204.16.0.? |
$[ ]$ |
| 86700.s1 |
86700n1 |
86700.s |
86700n |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{10} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$12.00378250$ |
$1$ |
|
$0$ |
$3172608$ |
$2.755253$ |
$-127157223424/16875$ |
$1.00596$ |
$5.33533$ |
$[0, -1, 0, -12610033, 17241623062]$ |
\(y^2=x^3-x^2-12610033x+17241623062\) |
3.4.0.a.1, 6.8.0.b.1, 15.8.0-3.a.1.2, 30.16.0-6.b.1.2 |
$[(1433478/23, 662136050/23)]$ |
| 86700.bk1 |
86700bh1 |
86700.bk |
86700bh |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{10} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$1.440729717$ |
$1$ |
|
$2$ |
$186624$ |
$1.338646$ |
$-127157223424/16875$ |
$1.00596$ |
$3.84026$ |
$[0, 1, 0, -43633, 3493988]$ |
\(y^2=x^3+x^2-43633x+3493988\) |
3.4.0.a.1, 6.8.0.b.1, 255.8.0.?, 510.16.0.? |
$[(128, 150)]$ |
| 208080.bn1 |
208080cc1 |
208080.bn |
208080cc |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{4} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$204$ |
$16$ |
$0$ |
$1.548251525$ |
$1$ |
|
$2$ |
$248832$ |
$1.083233$ |
$-127157223424/16875$ |
$1.00596$ |
$3.31542$ |
$[0, 0, 0, -15708, 757843]$ |
\(y^2=x^3-15708x+757843\) |
3.4.0.a.1, 6.8.0.b.1, 204.16.0.? |
$[(69, 50)]$ |
| 208080.fx1 |
208080y1 |
208080.fx |
208080y |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{4} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12$ |
$16$ |
$0$ |
$2.389341458$ |
$1$ |
|
$2$ |
$4230144$ |
$2.499840$ |
$-127157223424/16875$ |
$1.00596$ |
$4.70361$ |
$[0, 0, 0, -4539612, 3723282659]$ |
\(y^2=x^3-4539612x+3723282659\) |
3.4.0.a.1, 6.8.0.b.1, 12.16.0-6.b.1.2 |
$[(1273, 2700)]$ |
| 260100.bl1 |
260100bl1 |
260100.bl |
260100bl |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{10} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$4.362512541$ |
$1$ |
|
$2$ |
$1492992$ |
$1.887953$ |
$-127157223424/16875$ |
$1.00596$ |
$4.03055$ |
$[0, 0, 0, -392700, -94730375]$ |
\(y^2=x^3-392700x-94730375\) |
3.4.0.a.1, 6.8.0.b.1, 255.8.0.?, 510.16.0.? |
$[(815, 11250)]$ |
| 260100.ct1 |
260100ct1 |
260100.ct |
260100ct |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{10} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25380864$ |
$3.304558$ |
$-127157223424/16875$ |
$1.00596$ |
$5.39390$ |
$[0, 0, 0, -113490300, -465410332375]$ |
\(y^2=x^3-113490300x-465410332375\) |
3.4.0.a.1, 6.8.0.b.1, 15.8.0-3.a.1.1, 30.16.0-6.b.1.1 |
$[ ]$ |
| 277440.v1 |
277440v1 |
277440.v |
277440v |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{4} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$408$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$248832$ |
$0.880501$ |
$-127157223424/16875$ |
$1.00596$ |
$3.04522$ |
$[0, -1, 0, -6981, -222219]$ |
\(y^2=x^3-x^2-6981x-222219\) |
3.4.0.a.1, 6.8.0.b.1, 408.16.0.? |
$[ ]$ |
| 277440.di1 |
277440di1 |
277440.di |
277440di |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{4} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$0.767416184$ |
$1$ |
|
$2$ |
$4230144$ |
$2.297108$ |
$-127157223424/16875$ |
$1.00596$ |
$4.40154$ |
$[0, -1, 0, -2017605, 1103867397]$ |
\(y^2=x^3-x^2-2017605x+1103867397\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.3 |
$[(1349, 28900)]$ |
| 277440.gk1 |
277440gk1 |
277440.gk |
277440gk |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{4} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$408$ |
$16$ |
$0$ |
$1.079806212$ |
$1$ |
|
$10$ |
$248832$ |
$0.880501$ |
$-127157223424/16875$ |
$1.00596$ |
$3.04522$ |
$[0, 1, 0, -6981, 222219]$ |
\(y^2=x^3+x^2-6981x+222219\) |
3.4.0.a.1, 6.8.0.b.1, 408.16.0.? |
$[(54, 75), (-21, 600)]$ |
| 277440.is1 |
277440is1 |
277440.is |
277440is |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{4} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$2.156004829$ |
$1$ |
|
$2$ |
$4230144$ |
$2.297108$ |
$-127157223424/16875$ |
$1.00596$ |
$4.40154$ |
$[0, 1, 0, -2017605, -1103867397]$ |
\(y^2=x^3+x^2-2017605x-1103867397\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.2 |
$[(4431, 277440)]$ |
| 346800.dv1 |
346800dv1 |
346800.dv |
346800dv |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{10} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1020$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$746496$ |
$1.338646$ |
$-127157223424/16875$ |
$1.00596$ |
$3.42293$ |
$[0, -1, 0, -43633, -3493988]$ |
\(y^2=x^3-x^2-43633x-3493988\) |
3.4.0.a.1, 6.8.0.b.1, 1020.16.0.? |
$[ ]$ |
| 346800.hx1 |
346800hx1 |
346800.hx |
346800hx |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{10} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12690432$ |
$2.755253$ |
$-127157223424/16875$ |
$1.00596$ |
$4.75552$ |
$[0, 1, 0, -12610033, -17241623062]$ |
\(y^2=x^3+x^2-12610033x-17241623062\) |
3.4.0.a.1, 6.8.0.b.1, 60.16.0-6.b.1.2 |
$[ ]$ |