| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 17340.b1 |
17340a1 |
17340.b |
17340a |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{5} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.634855$ |
$-1192310528/84375$ |
$0.91788$ |
$3.30781$ |
$[0, -1, 0, -946, -11555]$ |
\(y^2=x^3-x^2-946x-11555\) |
510.2.0.? |
$[ ]$ |
$1$ |
| 17340.q1 |
17340q1 |
17340.q |
17340q |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{5} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$195840$ |
$2.051460$ |
$-1192310528/84375$ |
$0.91788$ |
$5.04940$ |
$[0, 1, 0, -273490, -58410475]$ |
\(y^2=x^3+x^2-273490x-58410475\) |
510.2.0.? |
$[ ]$ |
$1$ |
| 52020.q1 |
52020v1 |
52020.q |
52020v |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{5} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$3.190308655$ |
$1$ |
|
$2$ |
$1566720$ |
$2.600769$ |
$-1192310528/84375$ |
$0.91788$ |
$5.14557$ |
$[0, 0, 0, -2461413, 1574621413]$ |
\(y^2=x^3-2461413x+1574621413\) |
510.2.0.? |
$[(2601, 112999)]$ |
$1$ |
| 52020.x1 |
52020bh1 |
52020.x |
52020bh |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{5} \cdot 17^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.103097739$ |
$1$ |
|
$30$ |
$92160$ |
$1.184160$ |
$-1192310528/84375$ |
$0.91788$ |
$3.58017$ |
$[0, 0, 0, -8517, 320501]$ |
\(y^2=x^3-8517x+320501\) |
510.2.0.? |
$[(187, 2295), (17, 425)]$ |
$1$ |
| 69360.bg1 |
69360cv1 |
69360.bg |
69360cv |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{5} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.668230047$ |
$1$ |
|
$2$ |
$783360$ |
$2.051460$ |
$-1192310528/84375$ |
$0.91788$ |
$4.42144$ |
$[0, -1, 0, -273490, 58410475]$ |
\(y^2=x^3-x^2-273490x+58410475\) |
510.2.0.? |
$[(2505, 122825)]$ |
$1$ |
| 69360.cr1 |
69360de1 |
69360.cr |
69360de |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{5} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.973694319$ |
$1$ |
|
$2$ |
$46080$ |
$0.634855$ |
$-1192310528/84375$ |
$0.91788$ |
$2.89644$ |
$[0, 1, 0, -946, 11555]$ |
\(y^2=x^3+x^2-946x+11555\) |
510.2.0.? |
$[(11, 51)]$ |
$1$ |
| 86700.e1 |
86700h1 |
86700.e |
86700h |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{11} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4700160$ |
$2.856182$ |
$-1192310528/84375$ |
$0.91788$ |
$5.18396$ |
$[0, -1, 0, -6837258, -7287634863]$ |
\(y^2=x^3-x^2-6837258x-7287634863\) |
510.2.0.? |
$[ ]$ |
$1$ |
| 86700.by1 |
86700bl1 |
86700.by |
86700bl |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{11} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.443369592$ |
$1$ |
|
$4$ |
$276480$ |
$1.439573$ |
$-1192310528/84375$ |
$0.91788$ |
$3.68888$ |
$[0, 1, 0, -23658, -1491687]$ |
\(y^2=x^3+x^2-23658x-1491687\) |
510.2.0.? |
$[(198, 1275)]$ |
$1$ |
| 208080.p1 |
208080bs1 |
208080.p |
208080bs |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{5} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$7.807588152$ |
$1$ |
|
$0$ |
$6266880$ |
$2.600769$ |
$-1192310528/84375$ |
$0.91788$ |
$4.56306$ |
$[0, 0, 0, -2461413, -1574621413]$ |
\(y^2=x^3-2461413x-1574621413\) |
510.2.0.? |
$[(811801/20, 338392701/20)]$ |
$1$ |
| 208080.gx1 |
208080bi1 |
208080.gx |
208080bi |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{5} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$368640$ |
$1.184160$ |
$-1192310528/84375$ |
$0.91788$ |
$3.17487$ |
$[0, 0, 0, -8517, -320501]$ |
\(y^2=x^3-8517x-320501\) |
510.2.0.? |
$[ ]$ |
$1$ |
| 260100.q1 |
260100q1 |
260100.q |
260100q |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{11} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$5.007925227$ |
$1$ |
|
$2$ |
$37601280$ |
$3.405487$ |
$-1192310528/84375$ |
$0.91788$ |
$5.25586$ |
$[0, 0, 0, -61535325, 196827676625]$ |
\(y^2=x^3-61535325x+196827676625\) |
510.2.0.? |
$[(4960, 116775)]$ |
$1$ |
| 260100.do1 |
260100do1 |
260100.do |
260100do |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{11} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.709877755$ |
$1$ |
|
$0$ |
$2211840$ |
$1.988880$ |
$-1192310528/84375$ |
$0.91788$ |
$3.89251$ |
$[0, 0, 0, -212925, 40062625]$ |
\(y^2=x^3-212925x+40062625\) |
510.2.0.? |
$[(2465/2, 95625/2)]$ |
$1$ |
| 277440.cb1 |
277440cb1 |
277440.cb |
277440cb |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{5} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$55.34547900$ |
$1$ |
|
$0$ |
$6266880$ |
$2.398037$ |
$-1192310528/84375$ |
$0.91788$ |
$4.26421$ |
$[0, -1, 0, -1093961, -466189839]$ |
\(y^2=x^3-x^2-1093961x-466189839\) |
510.2.0.? |
$[(64991575989536678459096320/135469459259, 497608017899338273962634457880551209141/135469459259)]$ |
$1$ |
| 277440.em1 |
277440em1 |
277440.em |
277440em |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{5} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.999991011$ |
$1$ |
|
$2$ |
$368640$ |
$0.981429$ |
$-1192310528/84375$ |
$0.91788$ |
$2.90789$ |
$[0, -1, 0, -3785, 96225]$ |
\(y^2=x^3-x^2-3785x+96225\) |
510.2.0.? |
$[(40, 85)]$ |
$1$ |
| 277440.ff1 |
277440ff1 |
277440.ff |
277440ff |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{5} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$4.785657137$ |
$1$ |
|
$0$ |
$6266880$ |
$2.398037$ |
$-1192310528/84375$ |
$0.91788$ |
$4.26421$ |
$[0, 1, 0, -1093961, 466189839]$ |
\(y^2=x^3+x^2-1093961x+466189839\) |
510.2.0.? |
$[(12226/5, 869601/5)]$ |
$1$ |
| 277440.hn1 |
277440hn1 |
277440.hn |
277440hn |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{5} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.033318155$ |
$1$ |
|
$2$ |
$368640$ |
$0.981429$ |
$-1192310528/84375$ |
$0.91788$ |
$2.90789$ |
$[0, 1, 0, -3785, -96225]$ |
\(y^2=x^3+x^2-3785x-96225\) |
510.2.0.? |
$[(130, 1275)]$ |
$1$ |
| 346800.w1 |
346800w1 |
346800.w |
346800w |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{11} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.439573$ |
$-1192310528/84375$ |
$0.91788$ |
$3.28800$ |
$[0, -1, 0, -23658, 1491687]$ |
\(y^2=x^3-x^2-23658x+1491687\) |
510.2.0.? |
$[ ]$ |
$1$ |
| 346800.ky1 |
346800ky1 |
346800.ky |
346800ky |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{11} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$3.924061468$ |
$1$ |
|
$2$ |
$18800640$ |
$2.856182$ |
$-1192310528/84375$ |
$0.91788$ |
$4.62060$ |
$[0, 1, 0, -6837258, 7287634863]$ |
\(y^2=x^3+x^2-6837258x+7287634863\) |
510.2.0.? |
$[(-1977, 114375)]$ |
$1$ |