| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 170.d1 |
170e1 |
170.d |
170e |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \) |
\( - 2 \cdot 5 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$20$ |
$-0.669967$ |
$-116930169/170$ |
$0.88233$ |
$3.61766$ |
$[1, -1, 0, -10, -10]$ |
\(y^2+xy=x^3-x^2-10x-10\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 850.f1 |
850j1 |
850.f |
850j |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 17 \) |
\( - 2 \cdot 5^{7} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$480$ |
$0.134752$ |
$-116930169/170$ |
$0.88233$ |
$4.18610$ |
$[1, -1, 1, -255, -1503]$ |
\(y^2+xy+y=x^3-x^2-255x-1503\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 1360.a1 |
1360h1 |
1360.a |
1360h |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 17 \) |
\( - 2^{13} \cdot 5 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$0.138169166$ |
$1$ |
|
$8$ |
$480$ |
$0.023181$ |
$-116930169/170$ |
$0.88233$ |
$3.72785$ |
$[0, 0, 0, -163, 802]$ |
\(y^2=x^3-163x+802\) |
680.2.0.? |
$[(9, 8)]$ |
$1$ |
| 1530.o1 |
1530n1 |
1530.o |
1530n |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2 \cdot 3^{6} \cdot 5 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$280$ |
$-0.120660$ |
$-116930169/170$ |
$0.88233$ |
$3.43259$ |
$[1, -1, 1, -92, 361]$ |
\(y^2+xy+y=x^3-x^2-92x+361\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 2890.b1 |
2890l1 |
2890.b |
2890l |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17^{2} \) |
\( - 2 \cdot 5 \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5760$ |
$0.746640$ |
$-116930169/170$ |
$0.88233$ |
$4.46465$ |
$[1, -1, 0, -2944, -60830]$ |
\(y^2+xy=x^3-x^2-2944x-60830\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 5440.b1 |
5440p1 |
5440.b |
5440p |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 17 \) |
\( - 2^{19} \cdot 5 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1.548281081$ |
$1$ |
|
$4$ |
$3840$ |
$0.369754$ |
$-116930169/170$ |
$0.88233$ |
$3.61055$ |
$[0, 0, 0, -652, -6416]$ |
\(y^2=x^3-652x-6416\) |
680.2.0.? |
$[(30, 32)]$ |
$1$ |
| 5440.y1 |
5440z1 |
5440.y |
5440z |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 17 \) |
\( - 2^{19} \cdot 5 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$0.369754$ |
$-116930169/170$ |
$0.88233$ |
$3.61055$ |
$[0, 0, 0, -652, 6416]$ |
\(y^2=x^3-652x+6416\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 6800.z1 |
6800o1 |
6800.z |
6800o |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 17 \) |
\( - 2^{13} \cdot 5^{7} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.827900$ |
$-116930169/170$ |
$0.88233$ |
$4.14225$ |
$[0, 0, 0, -4075, 100250]$ |
\(y^2=x^3-4075x+100250\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 7650.l1 |
7650w1 |
7650.l |
7650w |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2 \cdot 3^{6} \cdot 5^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$0.531754438$ |
$1$ |
|
$4$ |
$6720$ |
$0.684058$ |
$-116930169/170$ |
$0.88233$ |
$3.89467$ |
$[1, -1, 0, -2292, 42866]$ |
\(y^2+xy=x^3-x^2-2292x+42866\) |
680.2.0.? |
$[(29, -2)]$ |
$1$ |
| 8330.a1 |
8330l1 |
8330.a |
8330l |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2 \cdot 5 \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$0.422904012$ |
$1$ |
|
$4$ |
$7200$ |
$0.302989$ |
$-116930169/170$ |
$0.88233$ |
$3.35139$ |
$[1, -1, 0, -499, 4423]$ |
\(y^2+xy=x^3-x^2-499x+4423\) |
680.2.0.? |
$[(9, 20)]$ |
$1$ |
| 12240.bh1 |
12240by1 |
12240.bh |
12240by |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{13} \cdot 3^{6} \cdot 5 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6720$ |
$0.572487$ |
$-116930169/170$ |
$0.88233$ |
$3.55795$ |
$[0, 0, 0, -1467, -21654]$ |
\(y^2=x^3-1467x-21654\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 14450.bk1 |
14450z1 |
14450.bk |
14450z |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{7} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$138240$ |
$1.551359$ |
$-116930169/170$ |
$0.88233$ |
$4.72263$ |
$[1, -1, 1, -73605, -7677353]$ |
\(y^2+xy+y=x^3-x^2-73605x-7677353\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 20570.p1 |
20570k1 |
20570.p |
20570k |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 11^{2} \cdot 17 \) |
\( - 2 \cdot 5 \cdot 11^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$3.491345994$ |
$1$ |
|
$0$ |
$25600$ |
$0.528981$ |
$-116930169/170$ |
$0.88233$ |
$3.31941$ |
$[1, -1, 1, -1233, 16987]$ |
\(y^2+xy+y=x^3-x^2-1233x+16987\) |
680.2.0.? |
$[(691/6, 239/6)]$ |
$1$ |
| 23120.bp1 |
23120bm1 |
23120.bp |
23120bm |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 17^{2} \) |
\( - 2^{13} \cdot 5 \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1.788802708$ |
$1$ |
|
$0$ |
$138240$ |
$1.439787$ |
$-116930169/170$ |
$0.88233$ |
$4.36850$ |
$[0, 0, 0, -47107, 3940226]$ |
\(y^2=x^3-47107x+3940226\) |
680.2.0.? |
$[(1105/3, 2312/3)]$ |
$1$ |
| 26010.ba1 |
26010bj1 |
26010.ba |
26010bj |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5 \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1.996458554$ |
$1$ |
|
$0$ |
$80640$ |
$1.295946$ |
$-116930169/170$ |
$0.88233$ |
$4.14810$ |
$[1, -1, 1, -26498, 1668907]$ |
\(y^2+xy+y=x^3-x^2-26498x+1668907\) |
680.2.0.? |
$[(443/2, 1865/2)]$ |
$1$ |
| 27200.f1 |
27200cg1 |
27200.f |
27200cg |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 17 \) |
\( - 2^{19} \cdot 5^{7} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$0.375931153$ |
$1$ |
|
$18$ |
$92160$ |
$1.174473$ |
$-116930169/170$ |
$0.88233$ |
$3.98717$ |
$[0, 0, 0, -16300, 802000]$ |
\(y^2=x^3-16300x+802000\) |
680.2.0.? |
$[(10, 800), (74, 32)]$ |
$1$ |
| 27200.cs1 |
27200p1 |
27200.cs |
27200p |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 17 \) |
\( - 2^{19} \cdot 5^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$5.543993465$ |
$1$ |
|
$0$ |
$92160$ |
$1.174473$ |
$-116930169/170$ |
$0.88233$ |
$3.98717$ |
$[0, 0, 0, -16300, -802000]$ |
\(y^2=x^3-16300x-802000\) |
680.2.0.? |
$[(3160/3, 163700/3)]$ |
$1$ |
| 28730.bf1 |
28730be1 |
28730.bf |
28730be |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 5 \cdot 13^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$44880$ |
$0.612508$ |
$-116930169/170$ |
$0.88233$ |
$3.30901$ |
$[1, -1, 1, -1722, -27101]$ |
\(y^2+xy+y=x^3-x^2-1722x-27101\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 41650.cn1 |
41650cg1 |
41650.cn |
41650cg |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2 \cdot 5^{7} \cdot 7^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$172800$ |
$1.107708$ |
$-116930169/170$ |
$0.88233$ |
$3.75214$ |
$[1, -1, 1, -12480, 540397]$ |
\(y^2+xy+y=x^3-x^2-12480x+540397\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 48960.bb1 |
48960eg1 |
48960.bb |
48960eg |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$5.359230842$ |
$1$ |
|
$2$ |
$53760$ |
$0.919061$ |
$-116930169/170$ |
$0.88233$ |
$3.48632$ |
$[0, 0, 0, -5868, -173232]$ |
\(y^2=x^3-5868x-173232\) |
680.2.0.? |
$[(1978, 87904)]$ |
$1$ |
| 48960.cg1 |
48960bk1 |
48960.cg |
48960bk |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$53760$ |
$0.919061$ |
$-116930169/170$ |
$0.88233$ |
$3.48632$ |
$[0, 0, 0, -5868, 173232]$ |
\(y^2=x^3-5868x+173232\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 61200.fl1 |
61200fp1 |
61200.fl |
61200fp |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{7} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$161280$ |
$1.377205$ |
$-116930169/170$ |
$0.88233$ |
$3.91454$ |
$[0, 0, 0, -36675, -2706750]$ |
\(y^2=x^3-36675x-2706750\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 61370.m1 |
61370t1 |
61370.m |
61370t |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 19^{2} \) |
\( - 2 \cdot 5 \cdot 17 \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$140760$ |
$0.802253$ |
$-116930169/170$ |
$0.88233$ |
$3.28774$ |
$[1, -1, 1, -3678, 86871]$ |
\(y^2+xy+y=x^3-x^2-3678x+86871\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 66640.cr1 |
66640ch1 |
66640.cr |
66640ch |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{13} \cdot 5 \cdot 7^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$172800$ |
$0.996136$ |
$-116930169/170$ |
$0.88233$ |
$3.47282$ |
$[0, 0, 0, -7987, -275086]$ |
\(y^2=x^3-7987x-275086\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 74970.cu1 |
74970cz1 |
74970.cu |
74970cz |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2 \cdot 3^{6} \cdot 5 \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$18.39869839$ |
$1$ |
|
$0$ |
$100800$ |
$0.852295$ |
$-116930169/170$ |
$0.88233$ |
$3.28261$ |
$[1, -1, 1, -4493, -114929]$ |
\(y^2+xy+y=x^3-x^2-4493x-114929\) |
680.2.0.? |
$[(458056517/2428, -219977177023/2428)]$ |
$1$ |
| 89930.v1 |
89930r1 |
89930.v |
89930r |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 23^{2} \) |
\( - 2 \cdot 5 \cdot 17 \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$4.051064956$ |
$1$ |
|
$0$ |
$237600$ |
$0.897780$ |
$-116930169/170$ |
$0.88233$ |
$3.27810$ |
$[1, -1, 0, -5389, 153815]$ |
\(y^2+xy=x^3-x^2-5389x+153815\) |
680.2.0.? |
$[(1411/3, 45758/3)]$ |
$1$ |
| 92480.e1 |
92480do1 |
92480.e |
92480do |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 17^{2} \) |
\( - 2^{19} \cdot 5 \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.786362$ |
$-116930169/170$ |
$0.88233$ |
$4.20259$ |
$[0, 0, 0, -188428, 31521808]$ |
\(y^2=x^3-188428x+31521808\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 92480.eh1 |
92480bf1 |
92480.eh |
92480bf |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 17^{2} \) |
\( - 2^{19} \cdot 5 \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$11.58178293$ |
$1$ |
|
$0$ |
$1105920$ |
$1.786362$ |
$-116930169/170$ |
$0.88233$ |
$4.20259$ |
$[0, 0, 0, -188428, -31521808]$ |
\(y^2=x^3-188428x-31521808\) |
680.2.0.? |
$[(998878/9, 997690400/9)]$ |
$1$ |
| 102850.b1 |
102850bc1 |
102850.b |
102850bc |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 17 \) |
\( - 2 \cdot 5^{7} \cdot 11^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$0.954972194$ |
$1$ |
|
$4$ |
$614400$ |
$1.333700$ |
$-116930169/170$ |
$0.88233$ |
$3.69322$ |
$[1, -1, 0, -30817, 2092591]$ |
\(y^2+xy=x^3-x^2-30817x+2092591\) |
680.2.0.? |
$[(179, 1423)]$ |
$1$ |
| 115600.b1 |
115600ce1 |
115600.b |
115600ce |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{13} \cdot 5^{7} \cdot 17^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$0.674200581$ |
$1$ |
|
$14$ |
$3317760$ |
$2.244507$ |
$-116930169/170$ |
$0.88233$ |
$4.59374$ |
$[0, 0, 0, -1177675, 492528250]$ |
\(y^2=x^3-1177675x+492528250\) |
680.2.0.? |
$[(255, 14450), (935, 14450)]$ |
$1$ |
| 130050.cp1 |
130050fr1 |
130050.cp |
130050fr |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{7} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1935360$ |
$2.100666$ |
$-116930169/170$ |
$0.88233$ |
$4.40121$ |
$[1, -1, 0, -662442, 207950966]$ |
\(y^2+xy=x^3-x^2-662442x+207950966\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 141610.bn1 |
141610cz1 |
141610.bn |
141610cz |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5 \cdot 7^{6} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2073600$ |
$1.719595$ |
$-116930169/170$ |
$0.88233$ |
$3.98407$ |
$[1, -1, 0, -144265, 21153215]$ |
\(y^2+xy=x^3-x^2-144265x+21153215\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 142970.o1 |
142970b1 |
142970.o |
142970b |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 29^{2} \) |
\( - 2 \cdot 5 \cdot 17 \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$458640$ |
$1.013681$ |
$-116930169/170$ |
$0.88233$ |
$3.26724$ |
$[1, -1, 1, -8568, -303483]$ |
\(y^2+xy+y=x^3-x^2-8568x-303483\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 143650.a1 |
143650be1 |
143650.a |
143650be |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 5^{7} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$5.294233837$ |
$1$ |
|
$0$ |
$1077120$ |
$1.417227$ |
$-116930169/170$ |
$0.88233$ |
$3.67372$ |
$[1, -1, 0, -43042, -3430634]$ |
\(y^2+xy=x^3-x^2-43042x-3430634\) |
680.2.0.? |
$[(1011/2, 9689/2)]$ |
$1$ |
| 163370.a1 |
163370k1 |
163370.a |
163370k |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2 \cdot 5 \cdot 17 \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$609000$ |
$1.047028$ |
$-116930169/170$ |
$0.88233$ |
$3.26427$ |
$[1, -1, 0, -9790, 375766]$ |
\(y^2+xy=x^3-x^2-9790x+375766\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 164560.e1 |
164560e1 |
164560.e |
164560e |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 11^{2} \cdot 17 \) |
\( - 2^{13} \cdot 5 \cdot 11^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$5.427932200$ |
$1$ |
|
$0$ |
$614400$ |
$1.222128$ |
$-116930169/170$ |
$0.88233$ |
$3.43723$ |
$[0, 0, 0, -19723, -1067462]$ |
\(y^2=x^3-19723x-1067462\) |
680.2.0.? |
$[(4279/3, 265958/3)]$ |
$1$ |
| 185130.bt1 |
185130da1 |
185130.bt |
185130da |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 17 \) |
\( - 2 \cdot 3^{6} \cdot 5 \cdot 11^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$12.13025096$ |
$1$ |
|
$0$ |
$358400$ |
$1.078287$ |
$-116930169/170$ |
$0.88233$ |
$3.26154$ |
$[1, -1, 0, -11094, -447562]$ |
\(y^2+xy=x^3-x^2-11094x-447562\) |
680.2.0.? |
$[(1469381/97, 1086891180/97)]$ |
$1$ |
| 208080.db1 |
208080cv1 |
208080.db |
208080cv |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( - 2^{13} \cdot 3^{6} \cdot 5 \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$11.20970530$ |
$1$ |
|
$0$ |
$1935360$ |
$1.989094$ |
$-116930169/170$ |
$0.88233$ |
$4.12295$ |
$[0, 0, 0, -423963, -106386102]$ |
\(y^2=x^3-423963x-106386102\) |
680.2.0.? |
$[(3410047/67, 946989998/67)]$ |
$1$ |
| 229840.c1 |
229840a1 |
229840.c |
229840a |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 2^{13} \cdot 5 \cdot 13^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1077120$ |
$1.305655$ |
$-116930169/170$ |
$0.88233$ |
$3.42540$ |
$[0, 0, 0, -27547, 1761994]$ |
\(y^2=x^3-27547x+1761994\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 232730.x1 |
232730x1 |
232730.x |
232730x |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 37^{2} \) |
\( - 2 \cdot 5 \cdot 17 \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$61.38861675$ |
$1$ |
|
$0$ |
$993600$ |
$1.135492$ |
$-116930169/170$ |
$0.88233$ |
$3.25670$ |
$[1, -1, 1, -13947, -631259]$ |
\(y^2+xy+y=x^3-x^2-13947x-631259\) |
680.2.0.? |
$[(16940729239338617795008002229/63984277860, 2204404813940698703405947122486636395090263/63984277860)]$ |
$1$ |
| 244800.ea1 |
244800ea1 |
244800.ea |
244800ea |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1.034605158$ |
$1$ |
|
$4$ |
$1290240$ |
$1.723780$ |
$-116930169/170$ |
$0.88233$ |
$3.81236$ |
$[0, 0, 0, -146700, 21654000]$ |
\(y^2=x^3-146700x+21654000\) |
680.2.0.? |
$[(190, 800)]$ |
$1$ |
| 244800.pe1 |
244800pe1 |
244800.pe |
244800pe |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{7} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1290240$ |
$1.723780$ |
$-116930169/170$ |
$0.88233$ |
$3.81236$ |
$[0, 0, 0, -146700, -21654000]$ |
\(y^2=x^3-146700x-21654000\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 258570.i1 |
258570i1 |
258570.i |
258570i |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 3^{6} \cdot 5 \cdot 13^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$628320$ |
$1.161814$ |
$-116930169/170$ |
$0.88233$ |
$3.25453$ |
$[1, -1, 0, -15495, 747215]$ |
\(y^2+xy=x^3-x^2-15495x+747215\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 266560.b1 |
266560b1 |
266560.b |
266560b |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{19} \cdot 5 \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$3.151587628$ |
$1$ |
|
$2$ |
$1382400$ |
$1.342709$ |
$-116930169/170$ |
$0.88233$ |
$3.42035$ |
$[0, 0, 0, -31948, -2200688]$ |
\(y^2=x^3-31948x-2200688\) |
680.2.0.? |
$[(224, 1372)]$ |
$1$ |
| 266560.hi1 |
266560hi1 |
266560.hi |
266560hi |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 17 \) |
\( - 2^{19} \cdot 5 \cdot 7^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$1.342709$ |
$-116930169/170$ |
$0.88233$ |
$3.42035$ |
$[0, 0, 0, -31948, 2200688]$ |
\(y^2=x^3-31948x+2200688\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 285770.a1 |
285770a1 |
285770.a |
285770a |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 41^{2} \) |
\( - 2 \cdot 5 \cdot 17 \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$5.457852810$ |
$1$ |
|
$2$ |
$1382400$ |
$1.186819$ |
$-116930169/170$ |
$0.88233$ |
$3.25250$ |
$[1, -1, 0, -17125, -859385]$ |
\(y^2+xy=x^3-x^2-17125x-859385\) |
680.2.0.? |
$[(9543, 927343)]$ |
$1$ |
| 306850.by1 |
306850by1 |
306850.by |
306850by |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 17 \cdot 19^{2} \) |
\( - 2 \cdot 5^{7} \cdot 17 \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3378240$ |
$1.606972$ |
$-116930169/170$ |
$0.88233$ |
$3.63325$ |
$[1, -1, 0, -91942, 10766966]$ |
\(y^2+xy=x^3-x^2-91942x+10766966\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 314330.m1 |
314330m1 |
314330.m |
314330m |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 43^{2} \) |
\( - 2 \cdot 5 \cdot 17 \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1.916762359$ |
$1$ |
|
$0$ |
$1596000$ |
$1.210634$ |
$-116930169/170$ |
$0.88233$ |
$3.25060$ |
$[1, -1, 1, -18837, 1001031]$ |
\(y^2+xy+y=x^3-x^2-18837x+1001031\) |
680.2.0.? |
$[(431/2, 3263/2)]$ |
$1$ |
| 333200.i1 |
333200i1 |
333200.i |
333200i |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{13} \cdot 5^{7} \cdot 7^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4147200$ |
$1.800854$ |
$-116930169/170$ |
$0.88233$ |
$3.79267$ |
$[0, 0, 0, -199675, -34385750]$ |
\(y^2=x^3-199675x-34385750\) |
680.2.0.? |
$[ ]$ |
$1$ |
| 349690.bi1 |
349690bi1 |
349690.bi |
349690bi |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 11^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5 \cdot 11^{6} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7372800$ |
$1.945587$ |
$-116930169/170$ |
$0.88233$ |
$3.91438$ |
$[1, -1, 1, -356247, 82033449]$ |
\(y^2+xy+y=x^3-x^2-356247x+82033449\) |
680.2.0.? |
$[ ]$ |
$1$ |