| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 19110.cg1 |
19110bw1 |
19110.cg |
19110bw |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{10} \cdot 5^{4} \cdot 7^{8} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.380959798$ |
$1$ |
|
$8$ |
$1693440$ |
$2.880959$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$5.87248$ |
$[1, 1, 1, -1778505, -4308958473]$ |
\(y^2+xy+y=x^3+x^2-1778505x-4308958473\) |
52.2.0.a.1 |
$[(4087, 236096)]$ |
| 19110.cs1 |
19110cs1 |
19110.cs |
19110cs |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{10} \cdot 5^{4} \cdot 7^{2} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.035207602$ |
$1$ |
|
$20$ |
$241920$ |
$1.908005$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$4.68811$ |
$[1, 0, 0, -36296, 12557376]$ |
\(y^2+xy=x^3-36296x+12557376\) |
52.2.0.a.1 |
$[(-104, 3952)]$ |
| 57330.n1 |
57330n1 |
57330.n |
57330n |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{16} \cdot 5^{4} \cdot 7^{8} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13547520$ |
$3.430267$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$5.88527$ |
$[1, -1, 0, -16006545, 116325872221]$ |
\(y^2+xy=x^3-x^2-16006545x+116325872221\) |
52.2.0.a.1 |
$[ ]$ |
| 57330.cd1 |
57330cq1 |
57330.cd |
57330cq |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{16} \cdot 5^{4} \cdot 7^{2} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1.325570017$ |
$1$ |
|
$2$ |
$1935360$ |
$2.457310$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$4.81966$ |
$[1, -1, 0, -326664, -339049152]$ |
\(y^2+xy=x^3-x^2-326664x-339049152\) |
52.2.0.a.1 |
$[(1872, 73944)]$ |
| 95550.by1 |
95550m1 |
95550.by |
95550m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{10} \cdot 5^{10} \cdot 7^{2} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5806080$ |
$2.712723$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$4.87224$ |
$[1, 1, 0, -907400, 1569672000]$ |
\(y^2+xy=x^3+x^2-907400x+1569672000\) |
52.2.0.a.1 |
$[ ]$ |
| 95550.ex1 |
95550dg1 |
95550.ex |
95550dg |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{10} \cdot 5^{10} \cdot 7^{8} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1.994090473$ |
$1$ |
|
$4$ |
$40642560$ |
$3.685680$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$5.89038$ |
$[1, 0, 1, -44462626, -538530883852]$ |
\(y^2+xy+y=x^3-44462626x-538530883852\) |
52.2.0.a.1 |
$[(30157, 5039321)]$ |
| 152880.ba1 |
152880eh1 |
152880.ba |
152880eh |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{26} \cdot 3^{10} \cdot 5^{4} \cdot 7^{2} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5806080$ |
$2.601151$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$4.56825$ |
$[0, -1, 0, -580736, -803672064]$ |
\(y^2=x^3-x^2-580736x-803672064\) |
52.2.0.a.1 |
$[ ]$ |
| 152880.gw1 |
152880bo1 |
152880.gw |
152880bo |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{26} \cdot 3^{10} \cdot 5^{4} \cdot 7^{8} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$40642560$ |
$3.574108$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$5.54630$ |
$[0, 1, 0, -28456080, 275716430100]$ |
\(y^2=x^3+x^2-28456080x+275716430100\) |
52.2.0.a.1 |
$[ ]$ |
| 248430.o1 |
248430o1 |
248430.o |
248430o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 3^{10} \cdot 5^{4} \cdot 7^{8} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$13.79697583$ |
$1$ |
|
$0$ |
$284497920$ |
$4.163437$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$5.89881$ |
$[1, 1, 0, -300567348, -9465278928048]$ |
\(y^2+xy=x^3+x^2-300567348x-9465278928048\) |
52.2.0.a.1 |
$[(841659336/41, 24384899684412/41)]$ |
| 248430.ek1 |
248430ek1 |
248430.ek |
248430ek |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 3^{10} \cdot 5^{4} \cdot 7^{2} \cdot 13^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.514600098$ |
$1$ |
|
$18$ |
$40642560$ |
$3.190479$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$4.95898$ |
$[1, 0, 1, -6134028, 27594689098]$ |
\(y^2+xy+y=x^3-6134028x+27594689098\) |
52.2.0.a.1 |
$[(1184, 147705), (100049, 31586775)]$ |
| 286650.lr1 |
286650lr1 |
286650.lr |
286650lr |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{16} \cdot 5^{10} \cdot 7^{2} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$46448640$ |
$3.262028$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$4.97083$ |
$[1, -1, 1, -8166605, -42389310603]$ |
\(y^2+xy+y=x^3-x^2-8166605x-42389310603\) |
52.2.0.a.1 |
$[ ]$ |
| 286650.md1 |
286650md1 |
286650.md |
286650md |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{16} \cdot 5^{10} \cdot 7^{8} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$325140480$ |
$4.234985$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$5.89996$ |
$[1, -1, 1, -400163630, 14540333863997]$ |
\(y^2+xy+y=x^3-x^2-400163630x+14540333863997\) |
52.2.0.a.1 |
$[ ]$ |
| 458640.ej1 |
458640ej1 |
458640.ej |
458640ej |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{26} \cdot 3^{16} \cdot 5^{4} \cdot 7^{8} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$53.36196982$ |
$1$ |
|
$0$ |
$325140480$ |
$4.123413$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$5.58454$ |
$[0, 0, 0, -256104723, -7444599717422]$ |
\(y^2=x^3-256104723x-7444599717422\) |
52.2.0.a.1 |
$[(3084849088292598967985639/9991208821, 3752094559177420262686770883689981150/9991208821)]$ |
| 458640.mc1 |
458640mc1 |
458640.mc |
458640mc |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{26} \cdot 3^{16} \cdot 5^{4} \cdot 7^{2} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$46448640$ |
$3.150459$ |
$-107920681386000721/1328441886720000$ |
$1.01988$ |
$4.68891$ |
$[0, 0, 0, -5226627, 21704372354]$ |
\(y^2=x^3-5226627x+21704372354\) |
52.2.0.a.1 |
$[ ]$ |