Learn more

Refine search


Results (1-50 of 4811 matches)

Next   Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
100.a1 100.a \( 2^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1033, -12438]$ \(y^2=x^3-x^2-1033x-12438\)
100.a2 100.a \( 2^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -908, -15688]$ \(y^2=x^3-x^2-908x-15688\)
100.a3 100.a \( 2^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -33, 62]$ \(y^2=x^3-x^2-33x+62\)
100.a4 100.a \( 2^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 92, 312]$ \(y^2=x^3-x^2+92x+312\)
101.a1 101.a \( 101 \) $1$ $\mathsf{trivial}$ $0.164703452$ $[0, 1, 1, -1, -1]$ \(y^2+y=x^3+x^2-x-1\)
102.a1 102.a \( 2 \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $0.143253892$ $[1, 1, 0, -2, 0]$ \(y^2+xy=x^3+x^2-2x\)
102.a2 102.a \( 2 \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $0.286507785$ $[1, 1, 0, 8, 10]$ \(y^2+xy=x^3+x^2+8x+10\)
102.b1 102.b \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -751, -6046]$ \(y^2+xy+y=x^3-751x-6046\)
102.b2 102.b \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -256, 1550]$ \(y^2+xy+y=x^3-256x+1550\)
102.b3 102.b \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -216, 2062]$ \(y^2+xy+y=x^3-216x+2062\)
102.b4 102.b \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 1809, -37790]$ \(y^2+xy+y=x^3+1809x-37790\)
102.c1 102.c \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -27744, -1781010]$ \(y^2+xy=x^3-27744x-1781010\)
102.c2 102.c \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -1734, -27936]$ \(y^2+xy=x^3-1734x-27936\)
102.c3 102.c \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1644, -30942]$ \(y^2+xy=x^3-1644x-30942\)
102.c4 102.c \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -114, -396]$ \(y^2+xy=x^3-114x-396\)
102.c5 102.c \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/8\Z$ $1$ $[1, 0, 0, -34, 68]$ \(y^2+xy=x^3-34x+68\)
102.c6 102.c \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, 226, -2232]$ \(y^2+xy=x^3+226x-2232\)
104.a1 104.a \( 2^{3} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -16, -32]$ \(y^2=x^3+x^2-16x-32\)
105.a1 105.a \( 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -113, -469]$ \(y^2+xy+y=x^3-113x-469\)
105.a2 105.a \( 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -8, -7]$ \(y^2+xy+y=x^3-8x-7\)
105.a3 105.a \( 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3, 1]$ \(y^2+xy+y=x^3-3x+1\)
105.a4 105.a \( 3 \cdot 5 \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 1, 17, -37]$ \(y^2+xy+y=x^3+17x-37\)
106.a1 106.a \( 2 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.068912680$ $[1, 1, 0, -7, 5]$ \(y^2+xy=x^3+x^2-7x+5\)
106.b1 106.b \( 2 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -27, -67]$ \(y^2+xy=x^3+x^2-27x-67\)
106.c1 106.c \( 2 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -9, -29]$ \(y^2+xy=x^3-9x-29\)
106.c2 106.c \( 2 \cdot 53 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, 1, 1]$ \(y^2+xy=x^3+x+1\)
106.d1 106.d \( 2 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -24603, -1487407]$ \(y^2+xy=x^3-24603x-1487407\)
106.d2 106.d \( 2 \cdot 53 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -283, -2351]$ \(y^2+xy=x^3-283x-2351\)
108.a1 108.a \( 2^{2} \cdot 3^{3} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 0, 0, -108]$ \(y^2=x^3-108\)
108.a2 108.a \( 2^{2} \cdot 3^{3} \) $0$ $\Z/3\Z$ $-3$ $1$ $[0, 0, 0, 0, 4]$ \(y^2=x^3+4\)
109.a1 109.a \( 109 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -8, -7]$ \(y^2+xy=x^3-x^2-8x-7\)
110.a1 110.a \( 2 \cdot 5 \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -89, 316]$ \(y^2+xy+y=x^3-89x+316\)
110.a2 110.a \( 2 \cdot 5 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 296, 1702]$ \(y^2+xy+y=x^3+296x+1702\)
110.b1 110.b \( 2 \cdot 5 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -5940, -178685]$ \(y^2+xy+y=x^3+x^2-5940x-178685\)
110.b2 110.b \( 2 \cdot 5 \cdot 11 \) $0$ $\Z/5\Z$ $1$ $[1, 1, 1, 10, -45]$ \(y^2+xy+y=x^3+x^2+10x-45\)
110.c1 110.c \( 2 \cdot 5 \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -1, 1]$ \(y^2+xy=x^3-x+1\)
110.c2 110.c \( 2 \cdot 5 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 9, -25]$ \(y^2+xy=x^3+9x-25\)
112.a1 112.a \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $0.119959949$ $[0, 1, 0, -40, 84]$ \(y^2=x^3+x^2-40x+84\)
112.a2 112.a \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $0.239919898$ $[0, 1, 0, 0, 4]$ \(y^2=x^3+x^2+4\)
112.b1 112.b \( 2^{4} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -299, -1990]$ \(y^2=x^3-299x-1990\)
112.b2 112.b \( 2^{4} \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, -59, 138]$ \(y^2=x^3-59x+138\)
112.b3 112.b \( 2^{4} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -19, -30]$ \(y^2=x^3-19x-30\)
112.b4 112.b \( 2^{4} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1, -2]$ \(y^2=x^3+x-2\)
112.c1 112.c \( 2^{4} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -43688, 3529328]$ \(y^2=x^3-x^2-43688x+3529328\)
112.c2 112.c \( 2^{4} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2728, 55920]$ \(y^2=x^3-x^2-2728x+55920\)
112.c3 112.c \( 2^{4} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -568, 4464]$ \(y^2=x^3-x^2-568x+4464\)
112.c4 112.c \( 2^{4} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -168, -784]$ \(y^2=x^3-x^2-168x-784\)
112.c5 112.c \( 2^{4} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -8, -16]$ \(y^2=x^3-x^2-8x-16\)
112.c6 112.c \( 2^{4} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 72, 368]$ \(y^2=x^3-x^2+72x+368\)
113.a1 113.a \( 113 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -2, -2]$ \(y^2+xy+y=x^3+x^2-2x-2\)
Next   Download to