Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
100.a1 |
100a3 |
100.a |
100a |
$4$ |
$6$ |
\( 2^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.12.0.24, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$36$ |
$0.424075$ |
$488095744/125$ |
$[0, -1, 0, -1033, -12438]$ |
\(y^2=x^3-x^2-1033x-12438\) |
100.a2 |
100a4 |
100.a |
100a |
$4$ |
$6$ |
\( 2^{2} \cdot 5^{2} \) |
\( - 2^{8} \cdot 5^{12} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.12.0.38, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$72$ |
$0.770649$ |
$-20720464/15625$ |
$[0, -1, 0, -908, -15688]$ |
\(y^2=x^3-x^2-908x-15688\) |
100.a3 |
100a1 |
100.a |
100a |
$4$ |
$6$ |
\( 2^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.12.0.24, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$12$ |
$-0.125231$ |
$16384/5$ |
$[0, -1, 0, -33, 62]$ |
\(y^2=x^3-x^2-33x+62\) |
100.a4 |
100a2 |
100.a |
100a |
$4$ |
$6$ |
\( 2^{2} \cdot 5^{2} \) |
\( - 2^{8} \cdot 5^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.12.0.38, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$24$ |
$0.221343$ |
$21296/25$ |
$[0, -1, 0, 92, 312]$ |
\(y^2=x^3-x^2+92x+312\) |
101.a1 |
101a1 |
101.a |
101a |
$1$ |
$1$ |
\( 101 \) |
\( 101 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.164703452$ |
$1$ |
|
$6$ |
$2$ |
$-0.916363$ |
$262144/101$ |
$[0, 1, 1, -1, -1]$ |
\(y^2+y=x^3+x^2-x-1\) |
102.a1 |
102a1 |
102.a |
102a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{2} \cdot 3^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.4 |
2B |
$0.143253892$ |
$1$ |
|
$15$ |
$8$ |
$-0.763528$ |
$1771561/612$ |
$[1, 1, 0, -2, 0]$ |
\(y^2+xy=x^3+x^2-2x\) |
102.a2 |
102a2 |
102.a |
102a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2 \cdot 3^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.5 |
2B |
$0.286507785$ |
$1$ |
|
$8$ |
$16$ |
$-0.416955$ |
$46268279/46818$ |
$[1, 1, 0, 8, 10]$ |
\(y^2+xy=x^3+x^2+8x+10\) |
102.b1 |
102c3 |
102.b |
102c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{18} \cdot 3^{2} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.4, 3.8.0.2 |
2B, 3B.1.2 |
$1$ |
$1$ |
|
$1$ |
$72$ |
$0.641426$ |
$46753267515625/11591221248$ |
$[1, 0, 1, -751, -6046]$ |
\(y^2+xy+y=x^3-751x-6046\) |
102.b2 |
102c1 |
102.b |
102c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{6} \cdot 3^{6} \cdot 17 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.4, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$24$ |
$0.092120$ |
$1845026709625/793152$ |
$[1, 0, 1, -256, 1550]$ |
\(y^2+xy+y=x^3-256x+1550\) |
102.b3 |
102c2 |
102.b |
102c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2^{3} \cdot 3^{12} \cdot 17^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.5, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$48$ |
$0.438694$ |
$-1107111813625/1228691592$ |
$[1, 0, 1, -216, 2062]$ |
\(y^2+xy+y=x^3-216x+2062\) |
102.b4 |
102c4 |
102.b |
102c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2^{9} \cdot 3^{4} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.5, 3.8.0.2 |
2B, 3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$144$ |
$0.988000$ |
$655215969476375/1001033261568$ |
$[1, 0, 1, 1809, -37790]$ |
\(y^2+xy+y=x^3+1809x-37790\) |
102.c1 |
102b5 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2 \cdot 3^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.136 |
2B |
$1$ |
$4$ |
$2$ |
$0$ |
$128$ |
$0.847078$ |
$2361739090258884097/5202$ |
$[1, 0, 0, -27744, -1781010]$ |
\(y^2+xy=x^3-27744x-1781010\) |
102.c2 |
102b3 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{2} \cdot 3^{4} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.48 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$64$ |
$0.500504$ |
$576615941610337/27060804$ |
$[1, 0, 0, -1734, -27936]$ |
\(y^2+xy=x^3-1734x-27936\) |
102.c3 |
102b6 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2 \cdot 3^{2} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.165 |
2B |
$1$ |
$1$ |
|
$0$ |
$128$ |
$0.847078$ |
$-491411892194497/125563633938$ |
$[1, 0, 0, -1644, -30942]$ |
\(y^2+xy=x^3-1644x-30942\) |
102.c4 |
102b2 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{4} \cdot 3^{8} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.38 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$32$ |
$0.153931$ |
$163936758817/30338064$ |
$[1, 0, 0, -114, -396]$ |
\(y^2+xy=x^3-114x-396\) |
102.c5 |
102b1 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{8} \cdot 3^{4} \cdot 17 \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.97 |
2B |
$1$ |
$1$ |
|
$7$ |
$16$ |
$-0.192642$ |
$4354703137/352512$ |
$[1, 0, 0, -34, 68]$ |
\(y^2+xy=x^3-34x+68\) |
102.c6 |
102b4 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2^{2} \cdot 3^{16} \cdot 17 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.99 |
2B |
$1$ |
$1$ |
|
$2$ |
$64$ |
$0.500504$ |
$1276229915423/2927177028$ |
$[1, 0, 0, 226, -2232]$ |
\(y^2+xy=x^3+226x-2232\) |
104.a1 |
104a1 |
104.a |
104a |
$1$ |
$1$ |
\( 2^{3} \cdot 13 \) |
\( - 2^{11} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$8$ |
$-0.393032$ |
$-235298/13$ |
$[0, 1, 0, -16, -32]$ |
\(y^2=x^3+x^2-16x-32\) |
105.a1 |
105a3 |
105.a |
105a |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \) |
\( 3 \cdot 5^{4} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.8 |
2B |
$1$ |
$1$ |
|
$0$ |
$16$ |
$-0.165962$ |
$157551496201/13125$ |
$[1, 0, 1, -113, -469]$ |
\(y^2+xy+y=x^3-113x-469\) |
105.a2 |
105a2 |
105.a |
105a |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \) |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.1 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$8$ |
$-0.512536$ |
$47045881/11025$ |
$[1, 0, 1, -8, -7]$ |
\(y^2+xy+y=x^3-8x-7\) |
105.a3 |
105a1 |
105.a |
105a |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \) |
\( 3 \cdot 5 \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.6 |
2B |
$1$ |
$1$ |
|
$1$ |
$4$ |
$-0.859109$ |
$1771561/105$ |
$[1, 0, 1, -3, 1]$ |
\(y^2+xy+y=x^3-3x+1\) |
105.a4 |
105a4 |
105.a |
105a |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \) |
\( - 3^{4} \cdot 5 \cdot 7^{4} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.7 |
2B |
$1$ |
$1$ |
|
$2$ |
$16$ |
$-0.165962$ |
$590589719/972405$ |
$[1, 0, 1, 17, -37]$ |
\(y^2+xy+y=x^3+17x-37\) |
106.a1 |
106b1 |
106.a |
106b |
$1$ |
$1$ |
\( 2 \cdot 53 \) |
\( - 2^{4} \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.068912680$ |
$1$ |
|
$10$ |
$8$ |
$-0.641726$ |
$-47045881/848$ |
$[1, 1, 0, -7, 5]$ |
\(y^2+xy=x^3+x^2-7x+5\) |
106.b1 |
106d1 |
106.b |
106d |
$1$ |
$1$ |
\( 2 \cdot 53 \) |
\( - 2^{5} \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$10$ |
$-0.446259$ |
$-2305199161/1696$ |
$[1, 1, 0, -27, -67]$ |
\(y^2+xy=x^3+x^2-27x-67\) |
106.c1 |
106a2 |
106.c |
106a |
$2$ |
$3$ |
\( 2 \cdot 53 \) |
\( - 2 \cdot 53^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$18$ |
$-0.263907$ |
$-81182737/297754$ |
$[1, 0, 0, -9, -29]$ |
\(y^2+xy=x^3-9x-29\) |
106.c2 |
106a1 |
106.c |
106a |
$2$ |
$3$ |
\( 2 \cdot 53 \) |
\( - 2^{3} \cdot 53 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$6$ |
$-0.813213$ |
$103823/424$ |
$[1, 0, 0, 1, 1]$ |
\(y^2+xy=x^3+x+1\) |
106.d1 |
106c2 |
106.d |
106c |
$2$ |
$3$ |
\( 2 \cdot 53 \) |
\( - 2^{8} \cdot 53^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$144$ |
$0.977397$ |
$-1646982616152408625/38112512$ |
$[1, 0, 0, -24603, -1487407]$ |
\(y^2+xy=x^3-24603x-1487407\) |
106.d2 |
106c1 |
106.d |
106c |
$2$ |
$3$ |
\( 2 \cdot 53 \) |
\( - 2^{24} \cdot 53 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$48$ |
$0.428091$ |
$-2507141976625/889192448$ |
$[1, 0, 0, -283, -2351]$ |
\(y^2+xy=x^3-283x-2351\) |
108.a1 |
108a2 |
108.a |
108a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{3} \) |
\( - 2^{8} \cdot 3^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.4 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$18$ |
$-0.035060$ |
$0$ |
$[0, 0, 0, 0, -108]$ |
\(y^2=x^3-108\) |
108.a2 |
108a1 |
108.a |
108a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{3} \) |
\( - 2^{8} \cdot 3^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$6$ |
$-0.584366$ |
$0$ |
$[0, 0, 0, 0, 4]$ |
\(y^2=x^3+4\) |
109.a1 |
109a1 |
109.a |
109a |
$1$ |
$1$ |
\( 109 \) |
\( -109 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$4$ |
$-0.716676$ |
$-60698457/109$ |
$[1, -1, 0, -8, -7]$ |
\(y^2+xy=x^3-x^2-8x-7\) |
110.a1 |
110c1 |
110.a |
110c |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 11 \) |
\( - 2^{7} \cdot 5 \cdot 11^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$28$ |
$-0.047191$ |
$-76711450249/851840$ |
$[1, 0, 1, -89, 316]$ |
\(y^2+xy+y=x^3-89x+316\) |
110.a2 |
110c2 |
110.a |
110c |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 11 \) |
\( - 2^{21} \cdot 5^{3} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$84$ |
$0.502115$ |
$2882081488391/2883584000$ |
$[1, 0, 1, 296, 1702]$ |
\(y^2+xy+y=x^3+296x+1702\) |
110.b1 |
110a2 |
110.b |
110a |
$2$ |
$5$ |
\( 2 \cdot 5 \cdot 11 \) |
\( - 2 \cdot 5 \cdot 11^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.3 |
5B.1.2 |
$1$ |
$1$ |
|
$0$ |
$100$ |
$0.645076$ |
$-23178622194826561/1610510$ |
$[1, 1, 1, -5940, -178685]$ |
\(y^2+xy+y=x^3+x^2-5940x-178685\) |
110.b2 |
110a1 |
110.b |
110a |
$2$ |
$5$ |
\( 2 \cdot 5 \cdot 11 \) |
\( - 2^{5} \cdot 5^{5} \cdot 11 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$20$ |
$-0.159643$ |
$109902239/1100000$ |
$[1, 1, 1, 10, -45]$ |
\(y^2+xy+y=x^3+x^2+10x-45\) |
110.c1 |
110b1 |
110.c |
110b |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 11 \) |
\( - 2^{3} \cdot 5 \cdot 11 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$4$ |
$-0.807105$ |
$-117649/440$ |
$[1, 0, 0, -1, 1]$ |
\(y^2+xy=x^3-x+1\) |
110.c2 |
110b2 |
110.c |
110b |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 11 \) |
\( - 2 \cdot 5^{3} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$12$ |
$-0.257799$ |
$80062991/332750$ |
$[1, 0, 0, 9, -25]$ |
\(y^2+xy=x^3+9x-25\) |
112.a1 |
112a2 |
112.a |
112a |
$2$ |
$2$ |
\( 2^{4} \cdot 7 \) |
\( 2^{11} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$0.119959949$ |
$1$ |
|
$15$ |
$16$ |
$-0.234669$ |
$3543122/49$ |
$[0, 1, 0, -40, 84]$ |
\(y^2=x^3+x^2-40x+84\) |
112.a2 |
112a1 |
112.a |
112a |
$2$ |
$2$ |
\( 2^{4} \cdot 7 \) |
\( - 2^{10} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$0.239919898$ |
$1$ |
|
$11$ |
$8$ |
$-0.581243$ |
$-4/7$ |
$[0, 1, 0, 0, 4]$ |
\(y^2=x^3+x^2+4\) |
112.b1 |
112b3 |
112.b |
112b |
$4$ |
$4$ |
\( 2^{4} \cdot 7 \) |
\( 2^{11} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.101 |
2B |
$1$ |
$1$ |
|
$1$ |
$16$ |
$-0.002033$ |
$1443468546/7$ |
$[0, 0, 0, -299, -1990]$ |
\(y^2=x^3-299x-1990\) |
112.b2 |
112b4 |
112.b |
112b |
$4$ |
$4$ |
\( 2^{4} \cdot 7 \) |
\( 2^{11} \cdot 7^{4} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.49 |
2B |
$1$ |
$1$ |
|
$3$ |
$16$ |
$-0.002033$ |
$11090466/2401$ |
$[0, 0, 0, -59, 138]$ |
\(y^2=x^3-59x+138\) |
112.b3 |
112b2 |
112.b |
112b |
$4$ |
$4$ |
\( 2^{4} \cdot 7 \) |
\( 2^{10} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.2 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$8$ |
$-0.348607$ |
$740772/49$ |
$[0, 0, 0, -19, -30]$ |
\(y^2=x^3-19x-30\) |
112.b4 |
112b1 |
112.b |
112b |
$4$ |
$4$ |
\( 2^{4} \cdot 7 \) |
\( - 2^{8} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.60 |
2B |
$1$ |
$1$ |
|
$1$ |
$4$ |
$-0.695180$ |
$432/7$ |
$[0, 0, 0, 1, -2]$ |
\(y^2=x^3+x-2\) |
112.c1 |
112c6 |
112.c |
112c |
$6$ |
$18$ |
\( 2^{4} \cdot 7 \) |
\( 2^{21} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 9.12.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$144$ |
$1.106249$ |
$2251439055699625/25088$ |
$[0, -1, 0, -43688, 3529328]$ |
\(y^2=x^3-x^2-43688x+3529328\) |
112.c2 |
112c5 |
112.c |
112c |
$6$ |
$18$ |
\( 2^{4} \cdot 7 \) |
\( - 2^{30} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 9.12.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$72$ |
$0.759675$ |
$-548347731625/1835008$ |
$[0, -1, 0, -2728, 55920]$ |
\(y^2=x^3-x^2-2728x+55920\) |
112.c3 |
112c4 |
112.c |
112c |
$6$ |
$18$ |
\( 2^{4} \cdot 7 \) |
\( 2^{15} \cdot 7^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 3.12.0.1 |
2B, 3Cs |
$1$ |
$1$ |
|
$1$ |
$48$ |
$0.556942$ |
$4956477625/941192$ |
$[0, -1, 0, -568, 4464]$ |
\(y^2=x^3-x^2-568x+4464\) |
112.c4 |
112c2 |
112.c |
112c |
$6$ |
$18$ |
\( 2^{4} \cdot 7 \) |
\( 2^{13} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 9.12.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$16$ |
$0.007636$ |
$128787625/98$ |
$[0, -1, 0, -168, -784]$ |
\(y^2=x^3-x^2-168x-784\) |
112.c5 |
112c1 |
112.c |
112c |
$6$ |
$18$ |
\( 2^{4} \cdot 7 \) |
\( - 2^{14} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 9.12.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$8$ |
$-0.338938$ |
$-15625/28$ |
$[0, -1, 0, -8, -16]$ |
\(y^2=x^3-x^2-8x-16\) |
112.c6 |
112c3 |
112.c |
112c |
$6$ |
$18$ |
\( 2^{4} \cdot 7 \) |
\( - 2^{18} \cdot 7^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 3.12.0.1 |
2B, 3Cs |
$1$ |
$1$ |
|
$1$ |
$24$ |
$0.210368$ |
$9938375/21952$ |
$[0, -1, 0, 72, 368]$ |
\(y^2=x^3-x^2+72x+368\) |
113.a1 |
113a2 |
113.a |
113a |
$2$ |
$2$ |
\( 113 \) |
\( 113 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.22 |
2B |
$1$ |
$1$ |
|
$1$ |
$12$ |
$-0.876173$ |
$912673/113$ |
$[1, 1, 1, -2, -2]$ |
\(y^2+xy+y=x^3+x^2-2x-2\) |