Further refine search
Results (displaying matches 1-50 of at least 1000) Next
| Curve | Isogeny class | |||||
|---|---|---|---|---|---|---|
| LMFDB label | Cremona label | LMFDB label | Cremona label | Weierstrass Coefficients | Rank | Torsion structure |
| 100.a1 | 100a3 | 100.a | 100a | [0, -1, 0, -1033, -12438] | 0 | [2] |
| 100.a2 | 100a4 | 100.a | 100a | [0, -1, 0, -908, -15688] | 0 | [2] |
| 100.a3 | 100a1 | 100.a | 100a | [0, -1, 0, -33, 62] | 0 | [2] |
| 100.a4 | 100a2 | 100.a | 100a | [0, -1, 0, 92, 312] | 0 | [2] |
| 101.a1 | 101a1 | 101.a | 101a | [0, 1, 1, -1, -1] | 1 | [] |
| 102.a1 | 102a1 | 102.a | 102a | [1, 1, 0, -2, 0] | 1 | [2] |
| 102.a2 | 102a2 | 102.a | 102a | [1, 1, 0, 8, 10] | 1 | [2] |
| 102.b1 | 102c3 | 102.b | 102c | [1, 0, 1, -751, -6046] | 0 | [2] |
| 102.b2 | 102c1 | 102.b | 102c | [1, 0, 1, -256, 1550] | 0 | [6] |
| 102.b3 | 102c2 | 102.b | 102c | [1, 0, 1, -216, 2062] | 0 | [6] |
| 102.b4 | 102c4 | 102.b | 102c | [1, 0, 1, 1809, -37790] | 0 | [2] |
| 102.c1 | 102b5 | 102.c | 102b | [1, 0, 0, -27744, -1781010] | 0 | [2] |
| 102.c2 | 102b3 | 102.c | 102b | [1, 0, 0, -1734, -27936] | 0 | [2, 2] |
| 102.c3 | 102b6 | 102.c | 102b | [1, 0, 0, -1644, -30942] | 0 | [2] |
| 102.c4 | 102b2 | 102.c | 102b | [1, 0, 0, -114, -396] | 0 | [2, 4] |
| 102.c5 | 102b1 | 102.c | 102b | [1, 0, 0, -34, 68] | 0 | [8] |
| 102.c6 | 102b4 | 102.c | 102b | [1, 0, 0, 226, -2232] | 0 | [4] |
| 104.a1 | 104a1 | 104.a | 104a | [0, 1, 0, -16, -32] | 0 | [] |
| 105.a1 | 105a3 | 105.a | 105a | [1, 0, 1, -113, -469] | 0 | [2] |
| 105.a2 | 105a2 | 105.a | 105a | [1, 0, 1, -8, -7] | 0 | [2, 2] |
| 105.a3 | 105a1 | 105.a | 105a | [1, 0, 1, -3, 1] | 0 | [2] |
| 105.a4 | 105a4 | 105.a | 105a | [1, 0, 1, 17, -37] | 0 | [4] |
| 106.a1 | 106b1 | 106.a | 106b | [1, 1, 0, -7, 5] | 1 | [] |
| 106.b1 | 106d1 | 106.b | 106d | [1, 1, 0, -27, -67] | 0 | [] |
| 106.c1 | 106a2 | 106.c | 106a | [1, 0, 0, -9, -29] | 0 | [] |
| 106.c2 | 106a1 | 106.c | 106a | [1, 0, 0, 1, 1] | 0 | [3] |
| 106.d1 | 106c2 | 106.d | 106c | [1, 0, 0, -24603, -1487407] | 0 | [] |
| 106.d2 | 106c1 | 106.d | 106c | [1, 0, 0, -283, -2351] | 0 | [3] |
| 108.a1 | 108a2 | 108.a | 108a | [0, 0, 0, 0, -108] | 0 | [] |
| 108.a2 | 108a1 | 108.a | 108a | [0, 0, 0, 0, 4] | 0 | [3] |
| 109.a1 | 109a1 | 109.a | 109a | [1, -1, 0, -8, -7] | 0 | [] |
| 110.a1 | 110c1 | 110.a | 110c | [1, 0, 1, -89, 316] | 0 | [3] |
| 110.a2 | 110c2 | 110.a | 110c | [1, 0, 1, 296, 1702] | 0 | [] |
| 110.b1 | 110a2 | 110.b | 110a | [1, 1, 1, -5940, -178685] | 0 | [] |
| 110.b2 | 110a1 | 110.b | 110a | [1, 1, 1, 10, -45] | 0 | [5] |
| 110.c1 | 110b1 | 110.c | 110b | [1, 0, 0, -1, 1] | 0 | [3] |
| 110.c2 | 110b2 | 110.c | 110b | [1, 0, 0, 9, -25] | 0 | [] |
| 112.a1 | 112a2 | 112.a | 112a | [0, 1, 0, -40, 84] | 1 | [2] |
| 112.a2 | 112a1 | 112.a | 112a | [0, 1, 0, 0, 4] | 1 | [2] |
| 112.b1 | 112b3 | 112.b | 112b | [0, 0, 0, -299, -1990] | 0 | [2] |
| 112.b2 | 112b4 | 112.b | 112b | [0, 0, 0, -59, 138] | 0 | [4] |
| 112.b3 | 112b2 | 112.b | 112b | [0, 0, 0, -19, -30] | 0 | [2, 2] |
| 112.b4 | 112b1 | 112.b | 112b | [0, 0, 0, 1, -2] | 0 | [2] |
| 112.c1 | 112c6 | 112.c | 112c | [0, -1, 0, -43688, 3529328] | 0 | [2] |
| 112.c2 | 112c5 | 112.c | 112c | [0, -1, 0, -2728, 55920] | 0 | [2] |
| 112.c3 | 112c4 | 112.c | 112c | [0, -1, 0, -568, 4464] | 0 | [2] |
| 112.c4 | 112c2 | 112.c | 112c | [0, -1, 0, -168, -784] | 0 | [2] |
| 112.c5 | 112c1 | 112.c | 112c | [0, -1, 0, -8, -16] | 0 | [2] |
| 112.c6 | 112c3 | 112.c | 112c | [0, -1, 0, 72, 368] | 0 | [2] |
| 113.a1 | 113a2 | 113.a | 113a | [1, 1, 1, -2, -2] | 0 | [2] |
In order to download results, determine the number of results.