| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 162.b1 |
162c3 |
162.b |
162c |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{7} \cdot 3^{6} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.1, 7.8.0.1 |
3B.1.1, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$2$ |
$42$ |
$0.269368$ |
$-189613868625/128$ |
$1.12596$ |
$6.39987$ |
$[1, -1, 0, -1077, 13877]$ |
\(y^2+xy=x^3-x^2-1077x+13877\) |
3.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.4.2, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
$1$ |
| 162.b2 |
162c4 |
162.b |
162c |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{21} \cdot 3^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.2, 7.8.0.1 |
3B.1.2, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$126$ |
$0.818674$ |
$-1159088625/2097152$ |
$1.11235$ |
$6.54031$ |
$[1, -1, 0, -852, 19664]$ |
\(y^2+xy=x^3-x^2-852x+19664\) |
3.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.1.3, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
$1$ |
| 162.b3 |
162c2 |
162.b |
162c |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{3} \cdot 3^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.2, 7.8.0.1 |
3B.1.2, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$18$ |
$-0.154281$ |
$-140625/8$ |
$1.17810$ |
$4.50778$ |
$[1, -1, 0, -42, -100]$ |
\(y^2+xy=x^3-x^2-42x-100\) |
3.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.3.2, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
$1$ |
| 162.b4 |
162c1 |
162.b |
162c |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2 \cdot 3^{6} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.1, 7.8.0.1 |
3B.1.1, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$2$ |
$6$ |
$-0.703587$ |
$3375/2$ |
$1.42657$ |
$2.89249$ |
$[1, -1, 0, 3, -1]$ |
\(y^2+xy=x^3-x^2+3x-1\) |
3.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.2.2, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
$1$ |
| 162.c1 |
162b4 |
162.c |
162b |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{7} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.2, 7.16.0.2 |
3B.1.2, 7B.2.3 |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$126$ |
$0.818674$ |
$-189613868625/128$ |
$1.12596$ |
$7.69550$ |
$[1, -1, 1, -9695, -364985]$ |
\(y^2+xy+y=x^3-x^2-9695x-364985\) |
3.8.0-3.a.1.1, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.4.3, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
$1$ |
| 162.c2 |
162b3 |
162.c |
162b |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{21} \cdot 3^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.1, 7.16.0.2 |
3B.1.1, 7B.2.3 |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$2$ |
$42$ |
$0.269368$ |
$-1159088625/2097152$ |
$1.11235$ |
$5.24467$ |
$[1, -1, 1, -95, -697]$ |
\(y^2+xy+y=x^3-x^2-95x-697\) |
3.8.0-3.a.1.2, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.1.2, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
$1$ |
| 162.c3 |
162b1 |
162.c |
162b |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{3} \cdot 3^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.1, 7.16.0.1 |
3B.1.1, 7B.2.1 |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$2$ |
$6$ |
$-0.703587$ |
$-140625/8$ |
$1.17810$ |
$3.21214$ |
$[1, -1, 1, -5, 5]$ |
\(y^2+xy+y=x^3-x^2-5x+5\) |
3.8.0-3.a.1.2, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.3.3, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
$1$ |
| 162.c4 |
162b2 |
162.c |
162b |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2 \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.2, 7.16.0.1 |
3B.1.2, 7B.2.1 |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$18$ |
$-0.154281$ |
$3375/2$ |
$1.42657$ |
$4.18813$ |
$[1, -1, 1, 25, 1]$ |
\(y^2+xy+y=x^3-x^2+25x+1\) |
3.8.0-3.a.1.1, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.2.3, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
$1$ |
| 338.c1 |
338a2 |
338.c |
338a |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{14} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$1.188700458$ |
$1$ |
|
$4$ |
$84$ |
$0.196927$ |
$-38575685889/16384$ |
$1.08547$ |
$5.06720$ |
$[1, -1, 0, -389, -2859]$ |
\(y^2+xy=x^3-x^2-389x-2859\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 52.16.0-4.b.1.1, 91.48.0.?, $\ldots$ |
$[(26, 51)]$ |
$1$ |
| 338.c2 |
338a1 |
338.c |
338a |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$0.169814351$ |
$1$ |
|
$6$ |
$12$ |
$-0.776028$ |
$351/4$ |
$1.27279$ |
$2.39029$ |
$[1, -1, 0, 1, 1]$ |
\(y^2+xy=x^3-x^2+x+1\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 52.16.0-4.b.1.1, 91.48.0.?, $\ldots$ |
$[(0, 1)]$ |
$1$ |
| 338.e1 |
338b2 |
338.e |
338b |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{14} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.16.0.2, 7.16.0.2 |
7B.2.3 |
$364$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$1092$ |
$1.479403$ |
$-38575685889/16384$ |
$1.08547$ |
$7.71009$ |
$[1, -1, 1, -65773, -6478507]$ |
\(y^2+xy+y=x^3-x^2-65773x-6478507\) |
4.16.0-4.b.1.1, 7.16.0-7.a.1.1, 28.256.5-28.b.1.2, 91.48.0.?, 364.768.21.? |
$[ ]$ |
$1$ |
| 338.e2 |
338b1 |
338.e |
338b |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{2} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.16.0.2, 7.16.0.1 |
7B.2.1 |
$364$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$156$ |
$0.506447$ |
$351/4$ |
$1.27279$ |
$5.03319$ |
$[1, -1, 1, 137, 2643]$ |
\(y^2+xy+y=x^3-x^2+137x+2643\) |
4.16.0-4.b.1.1, 7.16.0-7.a.1.2, 28.256.5-28.b.2.2, 91.48.0.?, 364.768.21.? |
$[ ]$ |
$1$ |
| 507.b1 |
507b2 |
507.b |
507b |
$2$ |
$7$ |
\( 3 \cdot 13^{2} \) |
\( - 3^{14} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.2.0.1, 7.8.0.1 |
7B |
$2184$ |
$192$ |
$6$ |
$0.890582876$ |
$1$ |
|
$4$ |
$168$ |
$0.390368$ |
$-276301129/4782969$ |
$1.06787$ |
$4.49515$ |
$[1, 1, 1, -75, -1422]$ |
\(y^2+xy+y=x^3+x^2-75x-1422\) |
4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 91.48.0.?, 168.32.0.?, $\ldots$ |
$[(106, 1040)]$ |
$1$ |
| 507.b2 |
507b1 |
507.b |
507b |
$2$ |
$7$ |
\( 3 \cdot 13^{2} \) |
\( - 3^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.2.0.1, 7.8.0.1 |
7B |
$2184$ |
$192$ |
$6$ |
$0.127226125$ |
$1$ |
|
$8$ |
$24$ |
$-0.582586$ |
$-658489/9$ |
$0.91436$ |
$2.97839$ |
$[1, 1, 1, -10, 8]$ |
\(y^2+xy+y=x^3+x^2-10x+8\) |
4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 91.48.0.?, 168.32.0.?, $\ldots$ |
$[(2, 0)]$ |
$1$ |
| 507.c1 |
507a2 |
507.c |
507a |
$2$ |
$7$ |
\( 3 \cdot 13^{2} \) |
\( - 3^{14} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.2.0.1, 7.16.0.2 |
7B.2.3 |
$2184$ |
$192$ |
$6$ |
$1.810964640$ |
$1$ |
|
$0$ |
$2184$ |
$1.672844$ |
$-276301129/4782969$ |
$1.06787$ |
$6.96599$ |
$[1, 1, 0, -12678, -3060351]$ |
\(y^2+xy=x^3+x^2-12678x-3060351\) |
4.2.0.a.1, 7.16.0-7.a.1.1, 24.4.0-4.a.1.1, 28.32.0-28.a.1.4, 91.48.0.?, $\ldots$ |
$[(6144/5, 354243/5)]$ |
$1$ |
| 507.c2 |
507a1 |
507.c |
507a |
$2$ |
$7$ |
\( 3 \cdot 13^{2} \) |
\( - 3^{2} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.2.0.1, 7.16.0.1 |
7B.2.1 |
$2184$ |
$192$ |
$6$ |
$0.258709234$ |
$1$ |
|
$4$ |
$312$ |
$0.699888$ |
$-658489/9$ |
$0.91436$ |
$5.44924$ |
$[1, 1, 0, -1693, 26434]$ |
\(y^2+xy=x^3+x^2-1693x+26434\) |
4.2.0.a.1, 7.16.0-7.a.1.2, 24.4.0-4.a.1.1, 28.32.0-28.a.1.2, 91.48.0.?, $\ldots$ |
$[(70, 472)]$ |
$1$ |
| 1296.f1 |
1296k3 |
1296.f |
1296k |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{19} \cdot 3^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$3.080173468$ |
$1$ |
|
$2$ |
$1008$ |
$0.962515$ |
$-189613868625/128$ |
$1.12596$ |
$5.70357$ |
$[0, 0, 0, -17235, -870894]$ |
\(y^2=x^3-17235x-870894\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.4, $\ldots$ |
$[(217, 2368)]$ |
$1$ |
| 1296.f2 |
1296k4 |
1296.f |
1296k |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{33} \cdot 3^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1.026724489$ |
$1$ |
|
$4$ |
$3024$ |
$1.511822$ |
$-1159088625/2097152$ |
$1.11235$ |
$5.80326$ |
$[0, 0, 0, -13635, -1244862]$ |
\(y^2=x^3-13635x-1244862\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.1, $\ldots$ |
$[(1761, 73728)]$ |
$1$ |
| 1296.f3 |
1296k2 |
1296.f |
1296k |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{15} \cdot 3^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$0.146674927$ |
$1$ |
|
$8$ |
$432$ |
$0.538866$ |
$-140625/8$ |
$1.17810$ |
$4.36045$ |
$[0, 0, 0, -675, 7074]$ |
\(y^2=x^3-675x+7074\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.3, $\ldots$ |
$[(33, 144)]$ |
$1$ |
| 1296.f4 |
1296k1 |
1296.f |
1296k |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{13} \cdot 3^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$0.440024781$ |
$1$ |
|
$4$ |
$144$ |
$-0.010440$ |
$3375/2$ |
$1.42657$ |
$3.21382$ |
$[0, 0, 0, 45, 18]$ |
\(y^2=x^3+45x+18\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.2, $\ldots$ |
$[(1, 8)]$ |
$1$ |
| 1296.g1 |
1296e4 |
1296.g |
1296e |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{19} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$3024$ |
$1.511822$ |
$-189613868625/128$ |
$1.12596$ |
$6.62329$ |
$[0, 0, 0, -155115, 23514138]$ |
\(y^2=x^3-155115x+23514138\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.4, $\ldots$ |
$[ ]$ |
$1$ |
| 1296.g2 |
1296e3 |
1296.g |
1296e |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{33} \cdot 3^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$1008$ |
$0.962515$ |
$-1159088625/2097152$ |
$1.11235$ |
$4.88354$ |
$[0, 0, 0, -1515, 46106]$ |
\(y^2=x^3-1515x+46106\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.1, $\ldots$ |
$[ ]$ |
$1$ |
| 1296.g3 |
1296e1 |
1296.g |
1296e |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{15} \cdot 3^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$144$ |
$-0.010440$ |
$-140625/8$ |
$1.17810$ |
$3.44073$ |
$[0, 0, 0, -75, -262]$ |
\(y^2=x^3-75x-262\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.3, $\ldots$ |
$[ ]$ |
$1$ |
| 1296.g4 |
1296e2 |
1296.g |
1296e |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{13} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$432$ |
$0.538866$ |
$3375/2$ |
$1.42657$ |
$4.13354$ |
$[0, 0, 0, 405, -486]$ |
\(y^2=x^3+405x-486\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.2, $\ldots$ |
$[ ]$ |
$1$ |
| 1369.b1 |
1369c2 |
1369.b |
1369c |
$2$ |
$7$ |
\( 37^{2} \) |
\( - 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 7$ |
4.2.0.1, 7.8.0.1 |
7B |
$2072$ |
$192$ |
$6$ |
$4.587943375$ |
$1$ |
|
$2$ |
$252$ |
$0.261696$ |
$-371323264041$ |
$1.11663$ |
$4.68886$ |
$[1, -1, 1, -1663, -25680]$ |
\(y^2+xy+y=x^3-x^2-1663x-25680\) |
4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 56.32.0.b.1, 259.48.0.?, $\ldots$ |
$[(75, 479)]$ |
$1$ |
| 1369.b2 |
1369c1 |
1369.b |
1369c |
$2$ |
$7$ |
\( 37^{2} \) |
\( - 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 7$ |
4.2.0.1, 7.8.0.1 |
7B |
$2072$ |
$192$ |
$6$ |
$0.655420482$ |
$1$ |
|
$2$ |
$36$ |
$-0.711259$ |
$999$ |
$0.76978$ |
$1.95637$ |
$[1, -1, 1, 2, -2]$ |
\(y^2+xy+y=x^3-x^2+2x-2\) |
4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 56.32.0.b.2, 259.48.0.?, $\ldots$ |
$[(1, 0)]$ |
$1$ |
| 1369.d1 |
1369b2 |
1369.d |
1369b |
$2$ |
$7$ |
\( 37^{2} \) |
\( - 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 7$ |
8.4.0.2, 7.16.0.2 |
7B.2.3 |
$2072$ |
$192$ |
$6$ |
$54.78414847$ |
$1$ |
|
$0$ |
$9324$ |
$2.067154$ |
$-371323264041$ |
$1.11663$ |
$7.68886$ |
$[1, -1, 0, -2276219, -1321241558]$ |
\(y^2+xy=x^3-x^2-2276219x-1321241558\) |
4.2.0.a.1, 7.16.0-7.a.1.1, 8.4.0-4.a.1.1, 28.32.0-28.a.1.4, 56.64.0-56.b.1.3, $\ldots$ |
$[(421055215896628564251093/15118249772, 90485547485451381407629665671951171/15118249772)]$ |
$1$ |
| 1369.d2 |
1369b1 |
1369.d |
1369b |
$2$ |
$7$ |
\( 37^{2} \) |
\( - 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 7$ |
8.4.0.2, 7.16.0.1 |
7B.2.1 |
$2072$ |
$192$ |
$6$ |
$7.826306925$ |
$1$ |
|
$0$ |
$1332$ |
$1.094200$ |
$999$ |
$0.76978$ |
$4.95637$ |
$[1, -1, 0, 3166, -59359]$ |
\(y^2+xy=x^3-x^2+3166x-59359\) |
4.2.0.a.1, 7.16.0-7.a.1.2, 8.4.0-4.a.1.1, 28.32.0-28.a.1.2, 56.64.0-56.b.2.3, $\ldots$ |
$[(1981/4, 91377/4)]$ |
$1$ |
| 1521.a1 |
1521e2 |
1521.a |
1521e |
$2$ |
$7$ |
\( 3^{2} \cdot 13^{2} \) |
\( - 3^{20} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.4.0.2, 7.8.0.1 |
7B |
$2184$ |
$192$ |
$6$ |
$1$ |
$1$ |
|
$0$ |
$17472$ |
$2.222149$ |
$-276301129/4782969$ |
$1.06787$ |
$6.82116$ |
$[1, -1, 1, -114107, 82515372]$ |
\(y^2+xy+y=x^3-x^2-114107x+82515372\) |
4.2.0.a.1, 7.8.0.a.1, 8.4.0-4.a.1.1, 21.16.0-7.a.1.1, 28.16.0.a.1, $\ldots$ |
$[ ]$ |
$1$ |
| 1521.a2 |
1521e1 |
1521.a |
1521e |
$2$ |
$7$ |
\( 3^{2} \cdot 13^{2} \) |
\( - 3^{8} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.4.0.2, 7.8.0.1 |
7B |
$2184$ |
$192$ |
$6$ |
$1$ |
$1$ |
|
$0$ |
$2496$ |
$1.249193$ |
$-658489/9$ |
$0.91436$ |
$5.53182$ |
$[1, -1, 1, -15242, -728958]$ |
\(y^2+xy+y=x^3-x^2-15242x-728958\) |
4.2.0.a.1, 7.8.0.a.1, 8.4.0-4.a.1.1, 21.16.0-7.a.1.2, 28.16.0.a.1, $\ldots$ |
$[ ]$ |
$1$ |
| 1521.d1 |
1521c2 |
1521.d |
1521c |
$2$ |
$7$ |
\( 3^{2} \cdot 13^{2} \) |
\( - 3^{20} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.2.0.1, 7.8.0.1 |
7B |
$2184$ |
$192$ |
$6$ |
$1$ |
$1$ |
|
$0$ |
$1344$ |
$0.939674$ |
$-276301129/4782969$ |
$1.06787$ |
$4.72078$ |
$[1, -1, 0, -675, 37714]$ |
\(y^2+xy=x^3-x^2-675x+37714\) |
4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 91.24.0.?, 104.4.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 1521.d2 |
1521c1 |
1521.d |
1521c |
$2$ |
$7$ |
\( 3^{2} \cdot 13^{2} \) |
\( - 3^{8} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.2.0.1, 7.8.0.1 |
7B |
$2184$ |
$192$ |
$6$ |
$1$ |
$1$ |
|
$0$ |
$192$ |
$-0.033281$ |
$-658489/9$ |
$0.91436$ |
$3.43144$ |
$[1, -1, 0, -90, -311]$ |
\(y^2+xy=x^3-x^2-90x-311\) |
4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 91.24.0.?, 104.4.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 1922.c1 |
1922e2 |
1922.c |
1922e |
$2$ |
$7$ |
\( 2 \cdot 31^{2} \) |
\( 2^{2} \cdot 31^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
2.2.0.1, 7.8.0.1 |
2Cn, 7B |
$1736$ |
$576$ |
$16$ |
$0.815886613$ |
$1$ |
|
$0$ |
$5880$ |
$1.052927$ |
$51181724570498001/4$ |
$1.10803$ |
$5.99675$ |
$[1, -1, 1, -76332, 8136267]$ |
\(y^2+xy+y=x^3-x^2-76332x+8136267\) |
2.2.0.a.1, 7.8.0.a.1, 14.48.0.b.1, 56.96.2.a.1, 62.6.0.a.1, $\ldots$ |
$[(639/2, -641/2)]$ |
$1$ |
| 1922.c2 |
1922e1 |
1922.c |
1922e |
$2$ |
$7$ |
\( 2 \cdot 31^{2} \) |
\( 2^{14} \cdot 31^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
2.2.0.1, 7.8.0.1 |
2Cn, 7B |
$1736$ |
$576$ |
$16$ |
$0.116555230$ |
$1$ |
|
$10$ |
$840$ |
$0.079973$ |
$42396561/16384$ |
$1.03599$ |
$3.23108$ |
$[1, -1, 1, -72, -117]$ |
\(y^2+xy+y=x^3-x^2-72x-117\) |
2.2.0.a.1, 7.8.0.a.1, 14.48.0.b.2, 56.96.2.a.2, 62.6.0.a.1, $\ldots$ |
$[(-3, 9)]$ |
$1$ |
| 1922.e1 |
1922c2 |
1922.e |
1922c |
$2$ |
$7$ |
\( 2 \cdot 31^{2} \) |
\( 2^{2} \cdot 31^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.4.0.1, 7.16.0.2 |
2Cn, 7B.2.3 |
$1736$ |
$576$ |
$16$ |
$1$ |
$49$ |
$7$ |
$0$ |
$182280$ |
$2.769920$ |
$51181724570498001/4$ |
$1.10803$ |
$8.72173$ |
$[1, -1, 1, -73354752, -241800700097]$ |
\(y^2+xy+y=x^3-x^2-73354752x-241800700097\) |
2.2.0.a.1, 7.16.0-7.a.1.1, 8.4.0-2.a.1.1, 14.96.0-14.b.1.1, 56.192.2-56.a.1.3, $\ldots$ |
$[ ]$ |
$1$ |
| 1922.e2 |
1922c1 |
1922.e |
1922c |
$2$ |
$7$ |
\( 2 \cdot 31^{2} \) |
\( 2^{14} \cdot 31^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.4.0.1, 7.16.0.1 |
2Cn, 7B.2.1 |
$1736$ |
$576$ |
$16$ |
$1$ |
$1$ |
|
$0$ |
$26040$ |
$1.796967$ |
$42396561/16384$ |
$1.03599$ |
$5.95606$ |
$[1, -1, 1, -68892, 4028767]$ |
\(y^2+xy+y=x^3-x^2-68892x+4028767\) |
2.2.0.a.1, 7.16.0-7.a.1.2, 8.4.0-2.a.1.1, 14.96.0-14.b.2.1, 56.192.2-56.a.2.1, $\ldots$ |
$[ ]$ |
$1$ |
| 2450.h1 |
2450d1 |
2450.h |
2450d |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 5^{2} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.2.0.2, 7.56.1.2 |
7Ns.3.1 |
$280$ |
$224$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$3528$ |
$1.048868$ |
$2268945/128$ |
$1.21697$ |
$4.78134$ |
$[1, -1, 0, -5252, 140496]$ |
\(y^2+xy=x^3-x^2-5252x+140496\) |
7.56.1.b.1, 8.2.0.b.1, 35.112.1-7.b.1.1, 56.112.5.t.1, 280.224.5.? |
$[ ]$ |
$1$ |
| 2450.i1 |
2450a1 |
2450.i |
2450a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 5^{2} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.2.0.2, 7.56.1.2 |
7Ns.3.1 |
$280$ |
$224$ |
$5$ |
$0.514615865$ |
$1$ |
|
$4$ |
$504$ |
$0.075913$ |
$2268945/128$ |
$1.21697$ |
$3.28522$ |
$[1, -1, 0, -107, -379]$ |
\(y^2+xy=x^3-x^2-107x-379\) |
7.56.1.b.1, 8.2.0.b.1, 35.112.1-7.b.1.1, 56.112.5.t.1, 280.224.5.? |
$[(-5, 6)]$ |
$1$ |
| 2450.y1 |
2450ba1 |
2450.y |
2450ba |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 5^{8} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.2.0.2, 7.112.1.2 |
7Ns.2.1 |
$56$ |
$224$ |
$5$ |
$0.313488421$ |
$1$ |
|
$6$ |
$2520$ |
$0.880632$ |
$2268945/128$ |
$1.21697$ |
$4.52264$ |
$[1, -1, 1, -2680, -50053]$ |
\(y^2+xy+y=x^3-x^2-2680x-50053\) |
7.112.1-7.b.1.1, 8.2.0.b.1, 56.224.5-56.t.1.4 |
$[(-31, 65)]$ |
$1$ |
| 2450.z1 |
2450bd1 |
2450.z |
2450bd |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 5^{8} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.2.0.2, 7.112.1.2 |
7Ns.2.1 |
$56$ |
$224$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$17640$ |
$1.853586$ |
$2268945/128$ |
$1.21697$ |
$6.01876$ |
$[1, -1, 1, -131305, 17430697]$ |
\(y^2+xy+y=x^3-x^2-131305x+17430697\) |
7.112.1-7.b.1.1, 8.2.0.b.1, 56.224.5-56.t.1.4 |
$[ ]$ |
$1$ |
| 2704.h1 |
2704e2 |
2704.h |
2704e |
$2$ |
$7$ |
\( 2^{4} \cdot 13^{2} \) |
\( - 2^{26} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.16.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$26208$ |
$2.172550$ |
$-38575685889/16384$ |
$1.08547$ |
$6.73383$ |
$[0, 0, 0, -1052363, 415676794]$ |
\(y^2=x^3-1052363x+415676794\) |
4.16.0-4.b.1.1, 7.8.0.a.1, 14.16.0-7.a.1.1, 28.256.5-28.b.1.3, 91.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 2704.h2 |
2704e1 |
2704.h |
2704e |
$2$ |
$7$ |
\( 2^{4} \cdot 13^{2} \) |
\( - 2^{14} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.16.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$3744$ |
$1.199594$ |
$351/4$ |
$1.27279$ |
$4.76132$ |
$[0, 0, 0, 2197, -171366]$ |
\(y^2=x^3+2197x-171366\) |
4.16.0-4.b.1.1, 7.8.0.a.1, 14.16.0-7.a.1.2, 28.256.5-28.b.2.3, 91.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 2704.i1 |
2704d2 |
2704.i |
2704d |
$2$ |
$7$ |
\( 2^{4} \cdot 13^{2} \) |
\( - 2^{26} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$2016$ |
$0.890075$ |
$-38575685889/16384$ |
$1.08547$ |
$4.78638$ |
$[0, 0, 0, -6227, 189202]$ |
\(y^2=x^3-6227x+189202\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 52.16.0-4.b.1.1, 91.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 2704.i2 |
2704d1 |
2704.i |
2704d |
$2$ |
$7$ |
\( 2^{4} \cdot 13^{2} \) |
\( - 2^{14} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$288$ |
$-0.082881$ |
$351/4$ |
$1.27279$ |
$2.81387$ |
$[0, 0, 0, 13, -78]$ |
\(y^2=x^3+13x-78\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 52.16.0-4.b.1.1, 91.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 3042.e1 |
3042b2 |
3042.e |
3042b |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 3^{6} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1092$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$34944$ |
$2.028709$ |
$-38575685889/16384$ |
$1.08547$ |
$6.41972$ |
$[1, -1, 0, -591954, 175511636]$ |
\(y^2+xy=x^3-x^2-591954x+175511636\) |
4.8.0.b.1, 7.8.0.a.1, 12.16.0-4.b.1.1, 21.16.0-7.a.1.1, 28.128.5.b.1, $\ldots$ |
$[ ]$ |
$1$ |
| 3042.e2 |
3042b1 |
3042.e |
3042b |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1092$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$4992$ |
$1.055754$ |
$351/4$ |
$1.27279$ |
$4.47618$ |
$[1, -1, 0, 1236, -72604]$ |
\(y^2+xy=x^3-x^2+1236x-72604\) |
4.8.0.b.1, 7.8.0.a.1, 12.16.0-4.b.1.1, 21.16.0-7.a.1.2, 28.128.5.b.2, $\ldots$ |
$[ ]$ |
$1$ |
| 3042.k1 |
3042l2 |
3042.k |
3042l |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 3^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1092$ |
$768$ |
$21$ |
$0.107569973$ |
$1$ |
|
$10$ |
$2688$ |
$0.746233$ |
$-38575685889/16384$ |
$1.08547$ |
$4.50087$ |
$[1, -1, 1, -3503, 80695]$ |
\(y^2+xy+y=x^3-x^2-3503x+80695\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 91.24.0.?, 156.16.0.?, $\ldots$ |
$[(19, 134)]$ |
$1$ |
| 3042.k2 |
3042l1 |
3042.k |
3042l |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1092$ |
$768$ |
$21$ |
$0.752989816$ |
$1$ |
|
$2$ |
$384$ |
$-0.226722$ |
$351/4$ |
$1.27279$ |
$2.55733$ |
$[1, -1, 1, 7, -35]$ |
\(y^2+xy+y=x^3-x^2+7x-35\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 156.16.0.?, $\ldots$ |
$[(7, 14)]$ |
$1$ |
| 3969.a1 |
3969f2 |
3969.a |
3969f |
$2$ |
$7$ |
\( 3^{4} \cdot 7^{2} \) |
\( 3^{10} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 7$ |
2.2.0.1, 7.8.0.1 |
2Cn, 7B |
$252$ |
$576$ |
$16$ |
$1.918158305$ |
$1$ |
|
$0$ |
$3780$ |
$0.974169$ |
$1168429123449$ |
$1.04816$ |
$5.14883$ |
$[1, -1, 1, -31268, -2120282]$ |
\(y^2+xy+y=x^3-x^2-31268x-2120282\) |
2.2.0.a.1, 7.8.0.a.1, 14.48.0.a.1, 21.16.0-7.a.1.2, 28.96.2.e.1, $\ldots$ |
$[(-2546/5, 6307/5)]$ |
$1$ |
| 3969.a2 |
3969f1 |
3969.a |
3969f |
$2$ |
$7$ |
\( 3^{4} \cdot 7^{2} \) |
\( 3^{10} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 7$ |
2.2.0.1, 7.8.0.1 |
2Cn, 7B |
$252$ |
$576$ |
$16$ |
$0.274022615$ |
$1$ |
|
$6$ |
$540$ |
$0.001213$ |
$21609$ |
$1.02581$ |
$3.00000$ |
$[1, -1, 1, -83, 298]$ |
\(y^2+xy+y=x^3-x^2-83x+298\) |
2.2.0.a.1, 7.8.0.a.1, 14.48.0.a.1, 21.16.0-7.a.1.1, 28.96.2.e.2, $\ldots$ |
$[(4, 2)]$ |
$1$ |