Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 800 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Nonmax $\ell$ $\ell$-adic images mod-$\ell$ images Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
162.b1 162.b \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $2, 3, 7$ 8.2.0.1, 3.8.0.1, 7.8.0.1 3B.1.1, 7B $1$ $[1, -1, 0, -1077, 13877]$ \(y^2+xy=x^3-x^2-1077x+13877\) 3.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.4.2, 24.16.0-24.a.1.8, $\ldots$ $[ ]$
162.b2 162.b \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.8.0.2, 7.8.0.1 3B.1.2, 7B $1$ $[1, -1, 0, -852, 19664]$ \(y^2+xy=x^3-x^2-852x+19664\) 3.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.1.3, 24.16.0-24.a.1.6, $\ldots$ $[ ]$
162.b3 162.b \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.8.0.2, 7.8.0.1 3B.1.2, 7B $1$ $[1, -1, 0, -42, -100]$ \(y^2+xy=x^3-x^2-42x-100\) 3.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.3.2, 24.16.0-24.a.1.6, $\ldots$ $[ ]$
162.b4 162.b \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $2, 3, 7$ 8.2.0.1, 3.8.0.1, 7.8.0.1 3B.1.1, 7B $1$ $[1, -1, 0, 3, -1]$ \(y^2+xy=x^3-x^2+3x-1\) 3.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.2.2, 24.16.0-24.a.1.8, $\ldots$ $[ ]$
162.c1 162.c \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.8.0.2, 7.16.0.2 3B.1.2, 7B.2.3 $1$ $[1, -1, 1, -9695, -364985]$ \(y^2+xy+y=x^3-x^2-9695x-364985\) 3.8.0-3.a.1.1, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.4.3, 24.16.0-24.a.1.6, $\ldots$ $[ ]$
162.c2 162.c \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $2, 3, 7$ 8.2.0.1, 3.8.0.1, 7.16.0.2 3B.1.1, 7B.2.3 $1$ $[1, -1, 1, -95, -697]$ \(y^2+xy+y=x^3-x^2-95x-697\) 3.8.0-3.a.1.2, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.1.2, 24.16.0-24.a.1.8, $\ldots$ $[ ]$
162.c3 162.c \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $2, 3, 7$ 8.2.0.1, 3.8.0.1, 7.16.0.1 3B.1.1, 7B.2.1 $1$ $[1, -1, 1, -5, 5]$ \(y^2+xy+y=x^3-x^2-5x+5\) 3.8.0-3.a.1.2, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.3.3, 24.16.0-24.a.1.8, $\ldots$ $[ ]$
162.c4 162.c \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.8.0.2, 7.16.0.1 3B.1.2, 7B.2.1 $1$ $[1, -1, 1, 25, 1]$ \(y^2+xy+y=x^3-x^2+25x+1\) 3.8.0-3.a.1.1, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.2.3, 24.16.0-24.a.1.6, $\ldots$ $[ ]$
338.c1 338.c \( 2 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 4.8.0.2, 7.8.0.1 7B $1.188700458$ $[1, -1, 0, -389, -2859]$ \(y^2+xy=x^3-x^2-389x-2859\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 52.16.0-4.b.1.1, 91.48.0.?, $\ldots$ $[(26, 51)]$
338.c2 338.c \( 2 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 4.8.0.2, 7.8.0.1 7B $0.169814351$ $[1, -1, 0, 1, 1]$ \(y^2+xy=x^3-x^2+x+1\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 52.16.0-4.b.1.1, 91.48.0.?, $\ldots$ $[(0, 1)]$
338.e1 338.e \( 2 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 4.16.0.2, 7.16.0.2 7B.2.3 $1$ $[1, -1, 1, -65773, -6478507]$ \(y^2+xy+y=x^3-x^2-65773x-6478507\) 4.16.0-4.b.1.1, 7.16.0-7.a.1.1, 28.256.5-28.b.1.2, 91.48.0.?, 364.768.21.? $[ ]$
338.e2 338.e \( 2 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 4.16.0.2, 7.16.0.1 7B.2.1 $1$ $[1, -1, 1, 137, 2643]$ \(y^2+xy+y=x^3-x^2+137x+2643\) 4.16.0-4.b.1.1, 7.16.0-7.a.1.2, 28.256.5-28.b.2.2, 91.48.0.?, 364.768.21.? $[ ]$
507.b1 507.b \( 3 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 4.2.0.1, 7.8.0.1 7B $0.890582876$ $[1, 1, 1, -75, -1422]$ \(y^2+xy+y=x^3+x^2-75x-1422\) 4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 91.48.0.?, 168.32.0.?, $\ldots$ $[(106, 1040)]$
507.b2 507.b \( 3 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 4.2.0.1, 7.8.0.1 7B $0.127226125$ $[1, 1, 1, -10, 8]$ \(y^2+xy+y=x^3+x^2-10x+8\) 4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 91.48.0.?, 168.32.0.?, $\ldots$ $[(2, 0)]$
507.c1 507.c \( 3 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 4.2.0.1, 7.16.0.2 7B.2.3 $1.810964640$ $[1, 1, 0, -12678, -3060351]$ \(y^2+xy=x^3+x^2-12678x-3060351\) 4.2.0.a.1, 7.16.0-7.a.1.1, 24.4.0-4.a.1.1, 28.32.0-28.a.1.4, 91.48.0.?, $\ldots$ $[(6144/5, 354243/5)]$
507.c2 507.c \( 3 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 4.2.0.1, 7.16.0.1 7B.2.1 $0.258709234$ $[1, 1, 0, -1693, 26434]$ \(y^2+xy=x^3+x^2-1693x+26434\) 4.2.0.a.1, 7.16.0-7.a.1.2, 24.4.0-4.a.1.1, 28.32.0-28.a.1.2, 91.48.0.?, $\ldots$ $[(70, 472)]$
1296.f1 1296.f \( 2^{4} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $3.080173468$ $[0, 0, 0, -17235, -870894]$ \(y^2=x^3-17235x-870894\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.4, $\ldots$ $[(217, 2368)]$
1296.f2 1296.f \( 2^{4} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1.026724489$ $[0, 0, 0, -13635, -1244862]$ \(y^2=x^3-13635x-1244862\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.1, $\ldots$ $[(1761, 73728)]$
1296.f3 1296.f \( 2^{4} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.146674927$ $[0, 0, 0, -675, 7074]$ \(y^2=x^3-675x+7074\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.3, $\ldots$ $[(33, 144)]$
1296.f4 1296.f \( 2^{4} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.440024781$ $[0, 0, 0, 45, 18]$ \(y^2=x^3+45x+18\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.2, $\ldots$ $[(1, 8)]$
1296.g1 1296.g \( 2^{4} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -155115, 23514138]$ \(y^2=x^3-155115x+23514138\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.4, $\ldots$ $[ ]$
1296.g2 1296.g \( 2^{4} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -1515, 46106]$ \(y^2=x^3-1515x+46106\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.1, $\ldots$ $[ ]$
1296.g3 1296.g \( 2^{4} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -75, -262]$ \(y^2=x^3-75x-262\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.3, $\ldots$ $[ ]$
1296.g4 1296.g \( 2^{4} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, 405, -486]$ \(y^2=x^3+405x-486\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.2, $\ldots$ $[ ]$
1369.b1 1369.b \( 37^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 4.2.0.1, 7.8.0.1 7B $4.587943375$ $[1, -1, 1, -1663, -25680]$ \(y^2+xy+y=x^3-x^2-1663x-25680\) 4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 56.32.0.b.1, 259.48.0.?, $\ldots$ $[(75, 479)]$
1369.b2 1369.b \( 37^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 4.2.0.1, 7.8.0.1 7B $0.655420482$ $[1, -1, 1, 2, -2]$ \(y^2+xy+y=x^3-x^2+2x-2\) 4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 56.32.0.b.2, 259.48.0.?, $\ldots$ $[(1, 0)]$
1369.d1 1369.d \( 37^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 8.4.0.2, 7.16.0.2 7B.2.3 $54.78414847$ $[1, -1, 0, -2276219, -1321241558]$ \(y^2+xy=x^3-x^2-2276219x-1321241558\) 4.2.0.a.1, 7.16.0-7.a.1.1, 8.4.0-4.a.1.1, 28.32.0-28.a.1.4, 56.64.0-56.b.1.3, $\ldots$ $[(421055215896628564251093/15118249772, 90485547485451381407629665671951171/15118249772)]$
1369.d2 1369.d \( 37^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 8.4.0.2, 7.16.0.1 7B.2.1 $7.826306925$ $[1, -1, 0, 3166, -59359]$ \(y^2+xy=x^3-x^2+3166x-59359\) 4.2.0.a.1, 7.16.0-7.a.1.2, 8.4.0-4.a.1.1, 28.32.0-28.a.1.2, 56.64.0-56.b.2.3, $\ldots$ $[(1981/4, 91377/4)]$
1521.a1 1521.a \( 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 8.4.0.2, 7.8.0.1 7B $1$ $[1, -1, 1, -114107, 82515372]$ \(y^2+xy+y=x^3-x^2-114107x+82515372\) 4.2.0.a.1, 7.8.0.a.1, 8.4.0-4.a.1.1, 21.16.0-7.a.1.1, 28.16.0.a.1, $\ldots$ $[ ]$
1521.a2 1521.a \( 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 8.4.0.2, 7.8.0.1 7B $1$ $[1, -1, 1, -15242, -728958]$ \(y^2+xy+y=x^3-x^2-15242x-728958\) 4.2.0.a.1, 7.8.0.a.1, 8.4.0-4.a.1.1, 21.16.0-7.a.1.2, 28.16.0.a.1, $\ldots$ $[ ]$
1521.d1 1521.d \( 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 4.2.0.1, 7.8.0.1 7B $1$ $[1, -1, 0, -675, 37714]$ \(y^2+xy=x^3-x^2-675x+37714\) 4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 91.24.0.?, 104.4.0.?, $\ldots$ $[ ]$
1521.d2 1521.d \( 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 4.2.0.1, 7.8.0.1 7B $1$ $[1, -1, 0, -90, -311]$ \(y^2+xy=x^3-x^2-90x-311\) 4.2.0.a.1, 7.8.0.a.1, 28.16.0.a.1, 91.24.0.?, 104.4.0.?, $\ldots$ $[ ]$
1922.c1 1922.c \( 2 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 2.2.0.1, 7.8.0.1 2Cn, 7B $0.815886613$ $[1, -1, 1, -76332, 8136267]$ \(y^2+xy+y=x^3-x^2-76332x+8136267\) 2.2.0.a.1, 7.8.0.a.1, 14.48.0.b.1, 56.96.2.a.1, 62.6.0.a.1, $\ldots$ $[(639/2, -641/2)]$
1922.c2 1922.c \( 2 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 2.2.0.1, 7.8.0.1 2Cn, 7B $0.116555230$ $[1, -1, 1, -72, -117]$ \(y^2+xy+y=x^3-x^2-72x-117\) 2.2.0.a.1, 7.8.0.a.1, 14.48.0.b.2, 56.96.2.a.2, 62.6.0.a.1, $\ldots$ $[(-3, 9)]$
1922.e1 1922.e \( 2 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 8.4.0.1, 7.16.0.2 2Cn, 7B.2.3 $1$ $[1, -1, 1, -73354752, -241800700097]$ \(y^2+xy+y=x^3-x^2-73354752x-241800700097\) 2.2.0.a.1, 7.16.0-7.a.1.1, 8.4.0-2.a.1.1, 14.96.0-14.b.1.1, 56.192.2-56.a.1.3, $\ldots$ $[ ]$
1922.e2 1922.e \( 2 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 8.4.0.1, 7.16.0.1 2Cn, 7B.2.1 $1$ $[1, -1, 1, -68892, 4028767]$ \(y^2+xy+y=x^3-x^2-68892x+4028767\) 2.2.0.a.1, 7.16.0-7.a.1.2, 8.4.0-2.a.1.1, 14.96.0-14.b.2.1, 56.192.2-56.a.2.1, $\ldots$ $[ ]$
2450.h1 2450.h \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 8.2.0.2, 7.56.1.2 7Ns.3.1 $1$ $[1, -1, 0, -5252, 140496]$ \(y^2+xy=x^3-x^2-5252x+140496\) 7.56.1.b.1, 8.2.0.b.1, 35.112.1-7.b.1.1, 56.112.5.t.1, 280.224.5.? $[ ]$
2450.i1 2450.i \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 8.2.0.2, 7.56.1.2 7Ns.3.1 $0.514615865$ $[1, -1, 0, -107, -379]$ \(y^2+xy=x^3-x^2-107x-379\) 7.56.1.b.1, 8.2.0.b.1, 35.112.1-7.b.1.1, 56.112.5.t.1, 280.224.5.? $[(-5, 6)]$
2450.y1 2450.y \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 8.2.0.2, 7.112.1.2 7Ns.2.1 $0.313488421$ $[1, -1, 1, -2680, -50053]$ \(y^2+xy+y=x^3-x^2-2680x-50053\) 7.112.1-7.b.1.1, 8.2.0.b.1, 56.224.5-56.t.1.4 $[(-31, 65)]$
2450.z1 2450.z \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 8.2.0.2, 7.112.1.2 7Ns.2.1 $1$ $[1, -1, 1, -131305, 17430697]$ \(y^2+xy+y=x^3-x^2-131305x+17430697\) 7.112.1-7.b.1.1, 8.2.0.b.1, 56.224.5-56.t.1.4 $[ ]$
2704.h1 2704.h \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 4.16.0.2, 7.8.0.1 7B $1$ $[0, 0, 0, -1052363, 415676794]$ \(y^2=x^3-1052363x+415676794\) 4.16.0-4.b.1.1, 7.8.0.a.1, 14.16.0-7.a.1.1, 28.256.5-28.b.1.3, 91.24.0.?, $\ldots$ $[ ]$
2704.h2 2704.h \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 4.16.0.2, 7.8.0.1 7B $1$ $[0, 0, 0, 2197, -171366]$ \(y^2=x^3+2197x-171366\) 4.16.0-4.b.1.1, 7.8.0.a.1, 14.16.0-7.a.1.2, 28.256.5-28.b.2.3, 91.24.0.?, $\ldots$ $[ ]$
2704.i1 2704.i \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 4.8.0.2, 7.8.0.1 7B $1$ $[0, 0, 0, -6227, 189202]$ \(y^2=x^3-6227x+189202\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 52.16.0-4.b.1.1, 91.24.0.?, $\ldots$ $[ ]$
2704.i2 2704.i \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 4.8.0.2, 7.8.0.1 7B $1$ $[0, 0, 0, 13, -78]$ \(y^2=x^3+13x-78\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 52.16.0-4.b.1.1, 91.24.0.?, $\ldots$ $[ ]$
3042.e1 3042.e \( 2 \cdot 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 4.8.0.2, 7.8.0.1 7B $1$ $[1, -1, 0, -591954, 175511636]$ \(y^2+xy=x^3-x^2-591954x+175511636\) 4.8.0.b.1, 7.8.0.a.1, 12.16.0-4.b.1.1, 21.16.0-7.a.1.1, 28.128.5.b.1, $\ldots$ $[ ]$
3042.e2 3042.e \( 2 \cdot 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $2, 7$ 4.8.0.2, 7.8.0.1 7B $1$ $[1, -1, 0, 1236, -72604]$ \(y^2+xy=x^3-x^2+1236x-72604\) 4.8.0.b.1, 7.8.0.a.1, 12.16.0-4.b.1.1, 21.16.0-7.a.1.2, 28.128.5.b.2, $\ldots$ $[ ]$
3042.k1 3042.k \( 2 \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 4.8.0.2, 7.8.0.1 7B $0.107569973$ $[1, -1, 1, -3503, 80695]$ \(y^2+xy+y=x^3-x^2-3503x+80695\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 91.24.0.?, 156.16.0.?, $\ldots$ $[(19, 134)]$
3042.k2 3042.k \( 2 \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 4.8.0.2, 7.8.0.1 7B $0.752989816$ $[1, -1, 1, 7, -35]$ \(y^2+xy+y=x^3-x^2+7x-35\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 156.16.0.?, $\ldots$ $[(7, 14)]$
3969.a1 3969.a \( 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 2.2.0.1, 7.8.0.1 2Cn, 7B $1.918158305$ $[1, -1, 1, -31268, -2120282]$ \(y^2+xy+y=x^3-x^2-31268x-2120282\) 2.2.0.a.1, 7.8.0.a.1, 14.48.0.a.1, 21.16.0-7.a.1.2, 28.96.2.e.1, $\ldots$ $[(-2546/5, 6307/5)]$
3969.a2 3969.a \( 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 7$ 2.2.0.1, 7.8.0.1 2Cn, 7B $0.274022615$ $[1, -1, 1, -83, 298]$ \(y^2+xy+y=x^3-x^2-83x+298\) 2.2.0.a.1, 7.8.0.a.1, 14.48.0.a.1, 21.16.0-7.a.1.1, 28.96.2.e.2, $\ldots$ $[(4, 2)]$
Next   displayed columns for results