| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 162.b1 |
162c3 |
162.b |
162c |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{7} \cdot 3^{6} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.1, 7.8.0.1 |
3B.1.1, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$2$ |
$42$ |
$0.269368$ |
$-189613868625/128$ |
$1.12596$ |
$6.39987$ |
$[1, -1, 0, -1077, 13877]$ |
\(y^2+xy=x^3-x^2-1077x+13877\) |
3.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.4.2, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
$1$ |
| 162.b2 |
162c4 |
162.b |
162c |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{21} \cdot 3^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.2, 7.8.0.1 |
3B.1.2, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$126$ |
$0.818674$ |
$-1159088625/2097152$ |
$1.11235$ |
$6.54031$ |
$[1, -1, 0, -852, 19664]$ |
\(y^2+xy=x^3-x^2-852x+19664\) |
3.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.1.3, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
$1$ |
| 162.b3 |
162c2 |
162.b |
162c |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{3} \cdot 3^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.2, 7.8.0.1 |
3B.1.2, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$18$ |
$-0.154281$ |
$-140625/8$ |
$1.17810$ |
$4.50778$ |
$[1, -1, 0, -42, -100]$ |
\(y^2+xy=x^3-x^2-42x-100\) |
3.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.3.2, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
$1$ |
| 162.b4 |
162c1 |
162.b |
162c |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2 \cdot 3^{6} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.1, 7.8.0.1 |
3B.1.1, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$2$ |
$6$ |
$-0.703587$ |
$3375/2$ |
$1.42657$ |
$2.89249$ |
$[1, -1, 0, 3, -1]$ |
\(y^2+xy=x^3-x^2+3x-1\) |
3.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.2.2, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
$1$ |
| 162.c1 |
162b4 |
162.c |
162b |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{7} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.2, 7.16.0.2 |
3B.1.2, 7B.2.3 |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$126$ |
$0.818674$ |
$-189613868625/128$ |
$1.12596$ |
$7.69550$ |
$[1, -1, 1, -9695, -364985]$ |
\(y^2+xy+y=x^3-x^2-9695x-364985\) |
3.8.0-3.a.1.1, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.4.3, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
$1$ |
| 162.c2 |
162b3 |
162.c |
162b |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{21} \cdot 3^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.1, 7.16.0.2 |
3B.1.1, 7B.2.3 |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$2$ |
$42$ |
$0.269368$ |
$-1159088625/2097152$ |
$1.11235$ |
$5.24467$ |
$[1, -1, 1, -95, -697]$ |
\(y^2+xy+y=x^3-x^2-95x-697\) |
3.8.0-3.a.1.2, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.1.2, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
$1$ |
| 162.c3 |
162b1 |
162.c |
162b |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{3} \cdot 3^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.1, 7.16.0.1 |
3B.1.1, 7B.2.1 |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$2$ |
$6$ |
$-0.703587$ |
$-140625/8$ |
$1.17810$ |
$3.21214$ |
$[1, -1, 1, -5, 5]$ |
\(y^2+xy+y=x^3-x^2-5x+5\) |
3.8.0-3.a.1.2, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.3.3, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
$1$ |
| 162.c4 |
162b2 |
162.c |
162b |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \) |
\( - 2 \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.8.0.2, 7.16.0.1 |
3B.1.2, 7B.2.1 |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$18$ |
$-0.154281$ |
$3375/2$ |
$1.42657$ |
$4.18813$ |
$[1, -1, 1, 25, 1]$ |
\(y^2+xy+y=x^3-x^2+25x+1\) |
3.8.0-3.a.1.1, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.2.3, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
$1$ |
| 1296.f1 |
1296k3 |
1296.f |
1296k |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{19} \cdot 3^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$3.080173468$ |
$1$ |
|
$2$ |
$1008$ |
$0.962515$ |
$-189613868625/128$ |
$1.12596$ |
$5.70357$ |
$[0, 0, 0, -17235, -870894]$ |
\(y^2=x^3-17235x-870894\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.4, $\ldots$ |
$[(217, 2368)]$ |
$1$ |
| 1296.f2 |
1296k4 |
1296.f |
1296k |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{33} \cdot 3^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1.026724489$ |
$1$ |
|
$4$ |
$3024$ |
$1.511822$ |
$-1159088625/2097152$ |
$1.11235$ |
$5.80326$ |
$[0, 0, 0, -13635, -1244862]$ |
\(y^2=x^3-13635x-1244862\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.1, $\ldots$ |
$[(1761, 73728)]$ |
$1$ |
| 1296.f3 |
1296k2 |
1296.f |
1296k |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{15} \cdot 3^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$0.146674927$ |
$1$ |
|
$8$ |
$432$ |
$0.538866$ |
$-140625/8$ |
$1.17810$ |
$4.36045$ |
$[0, 0, 0, -675, 7074]$ |
\(y^2=x^3-675x+7074\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.3, $\ldots$ |
$[(33, 144)]$ |
$1$ |
| 1296.f4 |
1296k1 |
1296.f |
1296k |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{13} \cdot 3^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$0.440024781$ |
$1$ |
|
$4$ |
$144$ |
$-0.010440$ |
$3375/2$ |
$1.42657$ |
$3.21382$ |
$[0, 0, 0, 45, 18]$ |
\(y^2=x^3+45x+18\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.2, $\ldots$ |
$[(1, 8)]$ |
$1$ |
| 1296.g1 |
1296e4 |
1296.g |
1296e |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{19} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$3024$ |
$1.511822$ |
$-189613868625/128$ |
$1.12596$ |
$6.62329$ |
$[0, 0, 0, -155115, 23514138]$ |
\(y^2=x^3-155115x+23514138\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.4, $\ldots$ |
$[ ]$ |
$1$ |
| 1296.g2 |
1296e3 |
1296.g |
1296e |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{33} \cdot 3^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$1008$ |
$0.962515$ |
$-1159088625/2097152$ |
$1.11235$ |
$4.88354$ |
$[0, 0, 0, -1515, 46106]$ |
\(y^2=x^3-1515x+46106\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.1, $\ldots$ |
$[ ]$ |
$1$ |
| 1296.g3 |
1296e1 |
1296.g |
1296e |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{15} \cdot 3^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$144$ |
$-0.010440$ |
$-140625/8$ |
$1.17810$ |
$3.44073$ |
$[0, 0, 0, -75, -262]$ |
\(y^2=x^3-75x-262\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.3, $\ldots$ |
$[ ]$ |
$1$ |
| 1296.g4 |
1296e2 |
1296.g |
1296e |
$4$ |
$21$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{13} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$432$ |
$0.538866$ |
$3375/2$ |
$1.42657$ |
$4.13354$ |
$[0, 0, 0, 405, -486]$ |
\(y^2=x^3+405x-486\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.2, $\ldots$ |
$[ ]$ |
$1$ |
| 4050.c1 |
4050f4 |
4050.c |
4050f |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{7} \cdot 3^{12} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$11.37381809$ |
$1$ |
|
$0$ |
$18144$ |
$1.623394$ |
$-189613868625/128$ |
$1.12596$ |
$5.87593$ |
$[1, -1, 0, -242367, -45865459]$ |
\(y^2+xy=x^3-x^2-242367x-45865459\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.1, 21.64.1.a.4, $\ldots$ |
$[(332549/19, 152033422/19)]$ |
$1$ |
| 4050.c2 |
4050f3 |
4050.c |
4050f |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{21} \cdot 3^{4} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$3.791272697$ |
$1$ |
|
$2$ |
$6048$ |
$1.074087$ |
$-1159088625/2097152$ |
$1.11235$ |
$4.37483$ |
$[1, -1, 0, -2367, -89459]$ |
\(y^2+xy=x^3-x^2-2367x-89459\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.2, 21.64.1.a.1, $\ldots$ |
$[(189, 2393)]$ |
$1$ |
| 4050.c3 |
4050f1 |
4050.c |
4050f |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{3} \cdot 3^{4} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$0.541610385$ |
$1$ |
|
$4$ |
$864$ |
$0.101132$ |
$-140625/8$ |
$1.17810$ |
$3.12993$ |
$[1, -1, 0, -117, 541]$ |
\(y^2+xy=x^3-x^2-117x+541\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.2, 21.64.1.a.3, $\ldots$ |
$[(9, 8)]$ |
$1$ |
| 4050.c4 |
4050f2 |
4050.c |
4050f |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2 \cdot 3^{12} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$1.624831155$ |
$1$ |
|
$4$ |
$2592$ |
$0.650438$ |
$3375/2$ |
$1.42657$ |
$3.72771$ |
$[1, -1, 0, 633, 791]$ |
\(y^2+xy=x^3-x^2+633x+791\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.1, 21.64.1.a.2, $\ldots$ |
$[(-1, 13)]$ |
$1$ |
| 4050.v1 |
4050bh3 |
4050.v |
4050bh |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$0.290823657$ |
$1$ |
|
$6$ |
$6048$ |
$1.074087$ |
$-189613868625/128$ |
$1.12596$ |
$5.08237$ |
$[1, -1, 1, -26930, 1707697]$ |
\(y^2+xy+y=x^3-x^2-26930x+1707697\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.2, 21.64.1.a.4, $\ldots$ |
$[(89, 55)]$ |
$1$ |
| 4050.v2 |
4050bh4 |
4050.v |
4050bh |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{21} \cdot 3^{10} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$0.096941219$ |
$1$ |
|
$14$ |
$18144$ |
$1.623394$ |
$-1159088625/2097152$ |
$1.11235$ |
$5.16839$ |
$[1, -1, 1, -21305, 2436697]$ |
\(y^2+xy+y=x^3-x^2-21305x+2436697\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.1, 21.64.1.a.1, $\ldots$ |
$[(-41, 1820)]$ |
$1$ |
| 4050.v3 |
4050bh2 |
4050.v |
4050bh |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{3} \cdot 3^{10} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$0.678588533$ |
$1$ |
|
$4$ |
$2592$ |
$0.650438$ |
$-140625/8$ |
$1.17810$ |
$3.92349$ |
$[1, -1, 1, -1055, -13553]$ |
\(y^2+xy+y=x^3-x^2-1055x-13553\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.1, 21.64.1.a.3, $\ldots$ |
$[(49, 200)]$ |
$1$ |
| 4050.v4 |
4050bh1 |
4050.v |
4050bh |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$2.035765600$ |
$1$ |
|
$0$ |
$864$ |
$0.101132$ |
$3375/2$ |
$1.42657$ |
$2.93415$ |
$[1, -1, 1, 70, -53]$ |
\(y^2+xy+y=x^3-x^2+70x-53\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.2, 21.64.1.a.2, $\ldots$ |
$[(11/2, 85/2)]$ |
$1$ |
| 5184.o1 |
5184u4 |
5184.o |
5184u |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{25} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$24192$ |
$1.858395$ |
$-189613868625/128$ |
$1.12596$ |
$6.03604$ |
$[0, 0, 0, -620460, 188113104]$ |
\(y^2=x^3-620460x+188113104\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 14.16.0-7.a.1.1, $\ldots$ |
$[ ]$ |
$1$ |
| 5184.o2 |
5184u3 |
5184.o |
5184u |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{39} \cdot 3^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$8064$ |
$1.309090$ |
$-1159088625/2097152$ |
$1.11235$ |
$4.57827$ |
$[0, 0, 0, -6060, 368848]$ |
\(y^2=x^3-6060x+368848\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 14.16.0-7.a.1.1, $\ldots$ |
$[ ]$ |
$1$ |
| 5184.o3 |
5184u1 |
5184.o |
5184u |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{21} \cdot 3^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$0.336134$ |
$-140625/8$ |
$1.17810$ |
$3.36930$ |
$[0, 0, 0, -300, -2096]$ |
\(y^2=x^3-300x-2096\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 14.16.0-7.a.1.2, $\ldots$ |
$[ ]$ |
$1$ |
| 5184.o4 |
5184u2 |
5184.o |
5184u |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{19} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.885440$ |
$3375/2$ |
$1.42657$ |
$3.94982$ |
$[0, 0, 0, 1620, -3888]$ |
\(y^2=x^3+1620x-3888\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 14.16.0-7.a.1.2, $\ldots$ |
$[ ]$ |
$1$ |
| 5184.p1 |
5184bd3 |
5184.p |
5184bd |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{25} \cdot 3^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$2.101119730$ |
$1$ |
|
$4$ |
$8064$ |
$1.309090$ |
$-189613868625/128$ |
$1.12596$ |
$5.26538$ |
$[0, 0, 0, -68940, -6967152]$ |
\(y^2=x^3-68940x-6967152\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.4, $\ldots$ |
$[(306, 768)]$ |
$1$ |
| 5184.p2 |
5184bd4 |
5184.p |
5184bd |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{39} \cdot 3^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$6.303359192$ |
$1$ |
|
$0$ |
$24192$ |
$1.858395$ |
$-1159088625/2097152$ |
$1.11235$ |
$5.34892$ |
$[0, 0, 0, -54540, -9958896]$ |
\(y^2=x^3-54540x-9958896\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.1, $\ldots$ |
$[(108178/19, 5341184/19)]$ |
$1$ |
| 5184.p3 |
5184bd2 |
5184.p |
5184bd |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{21} \cdot 3^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$0.900479884$ |
$1$ |
|
$4$ |
$3456$ |
$0.885440$ |
$-140625/8$ |
$1.17810$ |
$4.13995$ |
$[0, 0, 0, -2700, 56592]$ |
\(y^2=x^3-2700x+56592\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.3, $\ldots$ |
$[(34, 64)]$ |
$1$ |
| 5184.p4 |
5184bd1 |
5184.p |
5184bd |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{19} \cdot 3^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$0.300159961$ |
$1$ |
|
$4$ |
$1152$ |
$0.336134$ |
$3375/2$ |
$1.42657$ |
$3.17917$ |
$[0, 0, 0, 180, 144]$ |
\(y^2=x^3+180x+144\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.2, $\ldots$ |
$[(18, 96)]$ |
$1$ |
| 5184.q1 |
5184p3 |
5184.q |
5184p |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{25} \cdot 3^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$8064$ |
$1.309090$ |
$-189613868625/128$ |
$1.12596$ |
$5.26538$ |
$[0, 0, 0, -68940, 6967152]$ |
\(y^2=x^3-68940x+6967152\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.3, 21.64.1.a.4, $\ldots$ |
$[ ]$ |
$1$ |
| 5184.q2 |
5184p4 |
5184.q |
5184p |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{39} \cdot 3^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$24192$ |
$1.858395$ |
$-1159088625/2097152$ |
$1.11235$ |
$5.34892$ |
$[0, 0, 0, -54540, 9958896]$ |
\(y^2=x^3-54540x+9958896\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.4, 21.64.1.a.1, $\ldots$ |
$[ ]$ |
$1$ |
| 5184.q3 |
5184p2 |
5184.q |
5184p |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{21} \cdot 3^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.885440$ |
$-140625/8$ |
$1.17810$ |
$4.13995$ |
$[0, 0, 0, -2700, -56592]$ |
\(y^2=x^3-2700x-56592\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.4, 21.64.1.a.3, $\ldots$ |
$[ ]$ |
$1$ |
| 5184.q4 |
5184p1 |
5184.q |
5184p |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{19} \cdot 3^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$0.336134$ |
$3375/2$ |
$1.42657$ |
$3.17917$ |
$[0, 0, 0, 180, -144]$ |
\(y^2=x^3+180x-144\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.3, 21.64.1.a.2, $\ldots$ |
$[ ]$ |
$1$ |
| 5184.r1 |
5184a4 |
5184.r |
5184a |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{25} \cdot 3^{12} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$12.17320741$ |
$1$ |
|
$0$ |
$24192$ |
$1.858395$ |
$-189613868625/128$ |
$1.12596$ |
$6.03604$ |
$[0, 0, 0, -620460, -188113104]$ |
\(y^2=x^3-620460x-188113104\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.4, 21.64.1.a.4, $\ldots$ |
$[(5076310/17, 11425560832/17)]$ |
$1$ |
| 5184.r2 |
5184a3 |
5184.r |
5184a |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{39} \cdot 3^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$4.057735803$ |
$1$ |
|
$2$ |
$8064$ |
$1.309090$ |
$-1159088625/2097152$ |
$1.11235$ |
$4.57827$ |
$[0, 0, 0, -6060, -368848]$ |
\(y^2=x^3-6060x-368848\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.3, 21.64.1.a.1, $\ldots$ |
$[(17558, 2326528)]$ |
$1$ |
| 5184.r3 |
5184a1 |
5184.r |
5184a |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{21} \cdot 3^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$0.579676543$ |
$1$ |
|
$4$ |
$1152$ |
$0.336134$ |
$-140625/8$ |
$1.17810$ |
$3.36930$ |
$[0, 0, 0, -300, 2096]$ |
\(y^2=x^3-300x+2096\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.3, 21.64.1.a.3, $\ldots$ |
$[(-10, 64)]$ |
$1$ |
| 5184.r4 |
5184a2 |
5184.r |
5184a |
$4$ |
$21$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{19} \cdot 3^{12} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1.739029630$ |
$1$ |
|
$2$ |
$3456$ |
$0.885440$ |
$3375/2$ |
$1.42657$ |
$3.94982$ |
$[0, 0, 0, 1620, 3888]$ |
\(y^2=x^3+1620x+3888\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.4, 21.64.1.a.2, $\ldots$ |
$[(22, 224)]$ |
$1$ |
| 7938.i1 |
7938m3 |
7938.i |
7938m |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$10.13703660$ |
$1$ |
|
$0$ |
$15120$ |
$1.242323$ |
$-189613868625/128$ |
$1.12596$ |
$4.92631$ |
$[1, -1, 0, -52782, -4654252]$ |
\(y^2+xy=x^3-x^2-52782x-4654252\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.4.4, 24.8.0.a.1, $\ldots$ |
$[(138569/17, 42791946/17)]$ |
$1$ |
| 7938.i2 |
7938m4 |
7938.i |
7938m |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{21} \cdot 3^{10} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$3.379012201$ |
$1$ |
|
$2$ |
$45360$ |
$1.791630$ |
$-1159088625/2097152$ |
$1.11235$ |
$5.00588$ |
$[1, -1, 0, -41757, -6661243]$ |
\(y^2+xy=x^3-x^2-41757x-6661243\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.1.1, 24.8.0.a.1, $\ldots$ |
$[(751, 19249)]$ |
$1$ |
| 7938.i3 |
7938m2 |
7938.i |
7938m |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{10} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$0.482716028$ |
$1$ |
|
$4$ |
$6480$ |
$0.818674$ |
$-140625/8$ |
$1.17810$ |
$3.85428$ |
$[1, -1, 0, -2067, 38429]$ |
\(y^2+xy=x^3-x^2-2067x+38429\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.3.1, 24.8.0.a.1, $\ldots$ |
$[(-5, 223)]$ |
$1$ |
| 7938.i4 |
7938m1 |
7938.i |
7938m |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 7^{2} \) |
\( - 2 \cdot 3^{6} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$504$ |
$768$ |
$21$ |
$1.448148086$ |
$1$ |
|
$2$ |
$2160$ |
$0.269368$ |
$3375/2$ |
$1.42657$ |
$2.93909$ |
$[1, -1, 0, 138, 62]$ |
\(y^2+xy=x^3-x^2+138x+62\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.2.4, 24.8.0.a.1, $\ldots$ |
$[(23, 111)]$ |
$1$ |
| 7938.x1 |
7938u4 |
7938.x |
7938u |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{12} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.16.0.1 |
3B, 7B.2.1 |
$504$ |
$768$ |
$21$ |
$0.719702593$ |
$1$ |
|
$4$ |
$45360$ |
$1.791630$ |
$-189613868625/128$ |
$1.12596$ |
$5.66040$ |
$[1, -1, 1, -475040, 126139843]$ |
\(y^2+xy+y=x^3-x^2-475040x+126139843\) |
3.4.0.a.1, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.4.1, 24.8.0.a.1, $\ldots$ |
$[(401, -103)]$ |
$1$ |
| 7938.x2 |
7938u3 |
7938.x |
7938u |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{21} \cdot 3^{4} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.16.0.1 |
3B, 7B.2.1 |
$504$ |
$768$ |
$21$ |
$0.239900864$ |
$1$ |
|
$6$ |
$15120$ |
$1.242323$ |
$-1159088625/2097152$ |
$1.11235$ |
$4.27180$ |
$[1, -1, 1, -4640, 248259]$ |
\(y^2+xy+y=x^3-x^2-4640x+248259\) |
3.4.0.a.1, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.1.4, 24.8.0.a.1, $\ldots$ |
$[(93, 737)]$ |
$1$ |
| 7938.x3 |
7938u1 |
7938.x |
7938u |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{4} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.16.0.2 |
3B, 7B.2.3 |
$504$ |
$768$ |
$21$ |
$1.679306052$ |
$1$ |
|
$2$ |
$2160$ |
$0.269368$ |
$-140625/8$ |
$1.17810$ |
$3.12019$ |
$[1, -1, 1, -230, -1347]$ |
\(y^2+xy+y=x^3-x^2-230x-1347\) |
3.4.0.a.1, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.3.4, 24.8.0.a.1, $\ldots$ |
$[(51, 317)]$ |
$1$ |
| 7938.x4 |
7938u2 |
7938.x |
7938u |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 7^{2} \) |
\( - 2 \cdot 3^{12} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.16.0.2 |
3B, 7B.2.3 |
$504$ |
$768$ |
$21$ |
$5.037918157$ |
$1$ |
|
$0$ |
$6480$ |
$0.818674$ |
$3375/2$ |
$1.42657$ |
$3.67317$ |
$[1, -1, 1, 1240, -2915]$ |
\(y^2+xy+y=x^3-x^2+1240x-2915\) |
3.4.0.a.1, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.2.1, 24.8.0.a.1, $\ldots$ |
$[(725/4, 22871/4)]$ |
$1$ |
| 19602.i1 |
19602d4 |
19602.i |
19602d |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 11^{2} \) |
\( - 2^{7} \cdot 3^{12} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$5544$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$170100$ |
$2.017620$ |
$-189613868625/128$ |
$1.12596$ |
$5.41707$ |
$[1, -1, 0, -1173057, 489313853]$ |
\(y^2+xy=x^3-x^2-1173057x+489313853\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.4, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
$1$ |
| 19602.i2 |
19602d3 |
19602.i |
19602d |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 11^{2} \) |
\( - 2^{21} \cdot 3^{4} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$5544$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$56700$ |
$1.468315$ |
$-1159088625/2097152$ |
$1.11235$ |
$4.15547$ |
$[1, -1, 0, -11457, 961725]$ |
\(y^2+xy=x^3-x^2-11457x+961725\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.1, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
$1$ |