Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 240 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Nonmax $\ell$ $\ell$-adic images mod-$\ell$ images Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
162.b1 162.b \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $2, 3, 7$ 8.2.0.1, 3.8.0.1, 7.8.0.1 3B.1.1, 7B $1$ $[1, -1, 0, -1077, 13877]$ \(y^2+xy=x^3-x^2-1077x+13877\) 3.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.4.2, 24.16.0-24.a.1.8, $\ldots$ $[ ]$
162.b2 162.b \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.8.0.2, 7.8.0.1 3B.1.2, 7B $1$ $[1, -1, 0, -852, 19664]$ \(y^2+xy=x^3-x^2-852x+19664\) 3.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.1.3, 24.16.0-24.a.1.6, $\ldots$ $[ ]$
162.b3 162.b \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.8.0.2, 7.8.0.1 3B.1.2, 7B $1$ $[1, -1, 0, -42, -100]$ \(y^2+xy=x^3-x^2-42x-100\) 3.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.3.2, 24.16.0-24.a.1.6, $\ldots$ $[ ]$
162.b4 162.b \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $2, 3, 7$ 8.2.0.1, 3.8.0.1, 7.8.0.1 3B.1.1, 7B $1$ $[1, -1, 0, 3, -1]$ \(y^2+xy=x^3-x^2+3x-1\) 3.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.2.2, 24.16.0-24.a.1.8, $\ldots$ $[ ]$
162.c1 162.c \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.8.0.2, 7.16.0.2 3B.1.2, 7B.2.3 $1$ $[1, -1, 1, -9695, -364985]$ \(y^2+xy+y=x^3-x^2-9695x-364985\) 3.8.0-3.a.1.1, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.4.3, 24.16.0-24.a.1.6, $\ldots$ $[ ]$
162.c2 162.c \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $2, 3, 7$ 8.2.0.1, 3.8.0.1, 7.16.0.2 3B.1.1, 7B.2.3 $1$ $[1, -1, 1, -95, -697]$ \(y^2+xy+y=x^3-x^2-95x-697\) 3.8.0-3.a.1.2, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.1.2, 24.16.0-24.a.1.8, $\ldots$ $[ ]$
162.c3 162.c \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $2, 3, 7$ 8.2.0.1, 3.8.0.1, 7.16.0.1 3B.1.1, 7B.2.1 $1$ $[1, -1, 1, -5, 5]$ \(y^2+xy+y=x^3-x^2-5x+5\) 3.8.0-3.a.1.2, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.3.3, 24.16.0-24.a.1.8, $\ldots$ $[ ]$
162.c4 162.c \( 2 \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.8.0.2, 7.16.0.1 3B.1.2, 7B.2.1 $1$ $[1, -1, 1, 25, 1]$ \(y^2+xy+y=x^3-x^2+25x+1\) 3.8.0-3.a.1.1, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.2.3, 24.16.0-24.a.1.6, $\ldots$ $[ ]$
1296.f1 1296.f \( 2^{4} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $3.080173468$ $[0, 0, 0, -17235, -870894]$ \(y^2=x^3-17235x-870894\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.4, $\ldots$ $[(217, 2368)]$
1296.f2 1296.f \( 2^{4} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1.026724489$ $[0, 0, 0, -13635, -1244862]$ \(y^2=x^3-13635x-1244862\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.1, $\ldots$ $[(1761, 73728)]$
1296.f3 1296.f \( 2^{4} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.146674927$ $[0, 0, 0, -675, 7074]$ \(y^2=x^3-675x+7074\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.3, $\ldots$ $[(33, 144)]$
1296.f4 1296.f \( 2^{4} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.440024781$ $[0, 0, 0, 45, 18]$ \(y^2=x^3+45x+18\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.2, $\ldots$ $[(1, 8)]$
1296.g1 1296.g \( 2^{4} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -155115, 23514138]$ \(y^2=x^3-155115x+23514138\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.4, $\ldots$ $[ ]$
1296.g2 1296.g \( 2^{4} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -1515, 46106]$ \(y^2=x^3-1515x+46106\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.1, $\ldots$ $[ ]$
1296.g3 1296.g \( 2^{4} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -75, -262]$ \(y^2=x^3-75x-262\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 21.64.1.a.3, $\ldots$ $[ ]$
1296.g4 1296.g \( 2^{4} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, 405, -486]$ \(y^2=x^3+405x-486\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 21.64.1.a.2, $\ldots$ $[ ]$
4050.c1 4050.c \( 2 \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $11.37381809$ $[1, -1, 0, -242367, -45865459]$ \(y^2+xy=x^3-x^2-242367x-45865459\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.1, 21.64.1.a.4, $\ldots$ $[(332549/19, 152033422/19)]$
4050.c2 4050.c \( 2 \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $3.791272697$ $[1, -1, 0, -2367, -89459]$ \(y^2+xy=x^3-x^2-2367x-89459\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.2, 21.64.1.a.1, $\ldots$ $[(189, 2393)]$
4050.c3 4050.c \( 2 \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.541610385$ $[1, -1, 0, -117, 541]$ \(y^2+xy=x^3-x^2-117x+541\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.2, 21.64.1.a.3, $\ldots$ $[(9, 8)]$
4050.c4 4050.c \( 2 \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1.624831155$ $[1, -1, 0, 633, 791]$ \(y^2+xy=x^3-x^2+633x+791\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.1, 21.64.1.a.2, $\ldots$ $[(-1, 13)]$
4050.v1 4050.v \( 2 \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.290823657$ $[1, -1, 1, -26930, 1707697]$ \(y^2+xy+y=x^3-x^2-26930x+1707697\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.2, 21.64.1.a.4, $\ldots$ $[(89, 55)]$
4050.v2 4050.v \( 2 \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.096941219$ $[1, -1, 1, -21305, 2436697]$ \(y^2+xy+y=x^3-x^2-21305x+2436697\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.1, 21.64.1.a.1, $\ldots$ $[(-41, 1820)]$
4050.v3 4050.v \( 2 \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.678588533$ $[1, -1, 1, -1055, -13553]$ \(y^2+xy+y=x^3-x^2-1055x-13553\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.1, 21.64.1.a.3, $\ldots$ $[(49, 200)]$
4050.v4 4050.v \( 2 \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $2.035765600$ $[1, -1, 1, 70, -53]$ \(y^2+xy+y=x^3-x^2+70x-53\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.2, 21.64.1.a.2, $\ldots$ $[(11/2, 85/2)]$
5184.o1 5184.o \( 2^{6} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -620460, 188113104]$ \(y^2=x^3-620460x+188113104\) 3.4.0.a.1, 6.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 14.16.0-7.a.1.1, $\ldots$ $[ ]$
5184.o2 5184.o \( 2^{6} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -6060, 368848]$ \(y^2=x^3-6060x+368848\) 3.4.0.a.1, 6.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 14.16.0-7.a.1.1, $\ldots$ $[ ]$
5184.o3 5184.o \( 2^{6} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -300, -2096]$ \(y^2=x^3-300x-2096\) 3.4.0.a.1, 6.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 14.16.0-7.a.1.2, $\ldots$ $[ ]$
5184.o4 5184.o \( 2^{6} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, 1620, -3888]$ \(y^2=x^3+1620x-3888\) 3.4.0.a.1, 6.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 14.16.0-7.a.1.2, $\ldots$ $[ ]$
5184.p1 5184.p \( 2^{6} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $2.101119730$ $[0, 0, 0, -68940, -6967152]$ \(y^2=x^3-68940x-6967152\) 3.4.0.a.1, 6.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.4, $\ldots$ $[(306, 768)]$
5184.p2 5184.p \( 2^{6} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $6.303359192$ $[0, 0, 0, -54540, -9958896]$ \(y^2=x^3-54540x-9958896\) 3.4.0.a.1, 6.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.1, $\ldots$ $[(108178/19, 5341184/19)]$
5184.p3 5184.p \( 2^{6} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.900479884$ $[0, 0, 0, -2700, 56592]$ \(y^2=x^3-2700x+56592\) 3.4.0.a.1, 6.8.0-3.a.1.2, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.3, $\ldots$ $[(34, 64)]$
5184.p4 5184.p \( 2^{6} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.300159961$ $[0, 0, 0, 180, 144]$ \(y^2=x^3+180x+144\) 3.4.0.a.1, 6.8.0-3.a.1.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.2, $\ldots$ $[(18, 96)]$
5184.q1 5184.q \( 2^{6} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -68940, 6967152]$ \(y^2=x^3-68940x+6967152\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.3, 21.64.1.a.4, $\ldots$ $[ ]$
5184.q2 5184.q \( 2^{6} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -54540, 9958896]$ \(y^2=x^3-54540x+9958896\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.4, 21.64.1.a.1, $\ldots$ $[ ]$
5184.q3 5184.q \( 2^{6} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, -2700, -56592]$ \(y^2=x^3-2700x-56592\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.4, 21.64.1.a.3, $\ldots$ $[ ]$
5184.q4 5184.q \( 2^{6} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[0, 0, 0, 180, -144]$ \(y^2=x^3+180x-144\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.3, 21.64.1.a.2, $\ldots$ $[ ]$
5184.r1 5184.r \( 2^{6} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $12.17320741$ $[0, 0, 0, -620460, -188113104]$ \(y^2=x^3-620460x-188113104\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.4, 21.64.1.a.4, $\ldots$ $[(5076310/17, 11425560832/17)]$
5184.r2 5184.r \( 2^{6} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $4.057735803$ $[0, 0, 0, -6060, -368848]$ \(y^2=x^3-6060x-368848\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.3, 21.64.1.a.1, $\ldots$ $[(17558, 2326528)]$
5184.r3 5184.r \( 2^{6} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.579676543$ $[0, 0, 0, -300, 2096]$ \(y^2=x^3-300x+2096\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.3, 21.64.1.a.3, $\ldots$ $[(-10, 64)]$
5184.r4 5184.r \( 2^{6} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1.739029630$ $[0, 0, 0, 1620, 3888]$ \(y^2=x^3+1620x+3888\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.4, 21.64.1.a.2, $\ldots$ $[(22, 224)]$
7938.i1 7938.i \( 2 \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $10.13703660$ $[1, -1, 0, -52782, -4654252]$ \(y^2+xy=x^3-x^2-52782x-4654252\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.4.4, 24.8.0.a.1, $\ldots$ $[(138569/17, 42791946/17)]$
7938.i2 7938.i \( 2 \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $3.379012201$ $[1, -1, 0, -41757, -6661243]$ \(y^2+xy=x^3-x^2-41757x-6661243\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.1.1, 24.8.0.a.1, $\ldots$ $[(751, 19249)]$
7938.i3 7938.i \( 2 \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $0.482716028$ $[1, -1, 0, -2067, 38429]$ \(y^2+xy=x^3-x^2-2067x+38429\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.3.1, 24.8.0.a.1, $\ldots$ $[(-5, 223)]$
7938.i4 7938.i \( 2 \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1.448148086$ $[1, -1, 0, 138, 62]$ \(y^2+xy=x^3-x^2+138x+62\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.128.1-21.a.2.4, 24.8.0.a.1, $\ldots$ $[(23, 111)]$
7938.x1 7938.x \( 2 \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.16.0.1 3B, 7B.2.1 $0.719702593$ $[1, -1, 1, -475040, 126139843]$ \(y^2+xy+y=x^3-x^2-475040x+126139843\) 3.4.0.a.1, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.4.1, 24.8.0.a.1, $\ldots$ $[(401, -103)]$
7938.x2 7938.x \( 2 \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.16.0.1 3B, 7B.2.1 $0.239900864$ $[1, -1, 1, -4640, 248259]$ \(y^2+xy+y=x^3-x^2-4640x+248259\) 3.4.0.a.1, 7.16.0-7.a.1.2, 8.2.0.a.1, 21.128.1-21.a.1.4, 24.8.0.a.1, $\ldots$ $[(93, 737)]$
7938.x3 7938.x \( 2 \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.16.0.2 3B, 7B.2.3 $1.679306052$ $[1, -1, 1, -230, -1347]$ \(y^2+xy+y=x^3-x^2-230x-1347\) 3.4.0.a.1, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.3.4, 24.8.0.a.1, $\ldots$ $[(51, 317)]$
7938.x4 7938.x \( 2 \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.16.0.2 3B, 7B.2.3 $5.037918157$ $[1, -1, 1, 1240, -2915]$ \(y^2+xy+y=x^3-x^2+1240x-2915\) 3.4.0.a.1, 7.16.0-7.a.1.1, 8.2.0.a.1, 21.128.1-21.a.2.1, 24.8.0.a.1, $\ldots$ $[(725/4, 22871/4)]$
19602.i1 19602.i \( 2 \cdot 3^{4} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[1, -1, 0, -1173057, 489313853]$ \(y^2+xy=x^3-x^2-1173057x+489313853\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.4, 24.8.0.a.1, $\ldots$ $[ ]$
19602.i2 19602.i \( 2 \cdot 3^{4} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $2, 3, 7$ 8.2.0.1, 3.4.0.1, 7.8.0.1 3B, 7B $1$ $[1, -1, 0, -11457, 961725]$ \(y^2+xy=x^3-x^2-11457x+961725\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.1, 24.8.0.a.1, $\ldots$ $[ ]$
Next   displayed columns for results