Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (44 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Nonmax $\ell$ $\ell$-adic images mod-$\ell$ images Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
11094.g1 11094.g \( 2 \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $1$ $[1, 1, 0, -81738, 10098270]$ \(y^2+xy=x^3+x^2-81738x+10098270\) 8.2.0.a.1, 13.28.0.a.2, 104.56.1.?, 559.168.2.?, 4472.336.9.? $[ ]$
11094.g2 11094.g \( 2 \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $1$ $[1, 1, 0, -1328, -19200]$ \(y^2+xy=x^3+x^2-1328x-19200\) 8.2.0.a.1, 13.28.0.a.1, 104.56.1.?, 559.168.2.?, 4472.336.9.? $[ ]$
11094.o1 11094.o \( 2 \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.56.0.3 13B.3.2 $4.185008330$ $[1, 0, 0, -151134525, -805603568589]$ \(y^2+xy=x^3-151134525x-805603568589\) 8.2.0.a.1, 13.56.0-13.a.2.2, 104.112.1.?, 559.168.2.?, 4472.336.9.? $[(8970075/22, 17588748537/22)]$
11094.o2 11094.o \( 2 \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.56.0.1 13B.3.1 $0.321923717$ $[1, 0, 0, -2456435, 1482324321]$ \(y^2+xy=x^3-2456435x+1482324321\) 8.2.0.a.1, 13.56.0-13.a.1.1, 104.112.1.?, 559.168.2.?, 4472.336.9.? $[(154, 33205)]$
20736.a1 20736.a \( 2^{8} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $11.07886354$ $[0, 0, 0, -97896, -11789504]$ \(y^2=x^3-97896x-11789504\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.2, 104.56.1.?, 117.42.0.?, $\ldots$ $[(131040/17, 29902328/17)]$
20736.a2 20736.a \( 2^{8} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $0.852220272$ $[0, 0, 0, 24, 64]$ \(y^2=x^3+24x+64\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.1, 104.56.1.?, 117.42.0.?, $\ldots$ $[(0, 8)]$
20736.b1 20736.b \( 2^{8} \cdot 3^{4} \) $2$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $0.943859178$ $[0, 0, 0, -220266, 39789576]$ \(y^2=x^3-220266x+39789576\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.2, 104.56.1.?, 117.42.0.?, $\ldots$ $[(271, 1), (276, 144)]$
20736.b2 20736.b \( 2^{8} \cdot 3^{4} \) $2$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $0.943859178$ $[0, 0, 0, 54, -216]$ \(y^2=x^3+54x-216\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.1, 104.56.1.?, 117.42.0.?, $\ldots$ $[(6, 18), (15, 63)]$
20736.c1 20736.c \( 2^{8} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $1$ $[0, 0, 0, -97896, 11789504]$ \(y^2=x^3-97896x+11789504\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.2, 104.56.1.?, 117.42.0.?, $\ldots$ $[ ]$
20736.c2 20736.c \( 2^{8} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $1$ $[0, 0, 0, 24, -64]$ \(y^2=x^3+24x-64\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.1, 104.56.1.?, 117.42.0.?, $\ldots$ $[ ]$
20736.d1 20736.d \( 2^{8} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $24.76482283$ $[0, 0, 0, -220266, -39789576]$ \(y^2=x^3-220266x-39789576\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.2, 104.56.1.?, 117.42.0.?, $\ldots$ $[(58886576782/8929, 10078953993370090/8929)]$
20736.d2 20736.d \( 2^{8} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $1.904986372$ $[0, 0, 0, 54, 216]$ \(y^2=x^3+54x+216\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.1, 104.56.1.?, 117.42.0.?, $\ldots$ $[(-2, 10)]$
20736.m1 20736.m \( 2^{8} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $1$ $[0, 0, 0, -881064, 318316608]$ \(y^2=x^3-881064x+318316608\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.2, 104.56.1.?, 117.42.0.?, $\ldots$ $[ ]$
20736.m2 20736.m \( 2^{8} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $1$ $[0, 0, 0, 216, -1728]$ \(y^2=x^3+216x-1728\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.1, 104.56.1.?, 117.42.0.?, $\ldots$ $[ ]$
20736.n1 20736.n \( 2^{8} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $14.80026034$ $[0, 0, 0, -24474, -1473688]$ \(y^2=x^3-24474x-1473688\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.2, 104.56.1.?, 117.42.0.?, $\ldots$ $[(2651039/17, 4315792879/17)]$
20736.n2 20736.n \( 2^{8} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $1.138481565$ $[0, 0, 0, 6, 8]$ \(y^2=x^3+6x+8\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.1, 104.56.1.?, 117.42.0.?, $\ldots$ $[(-1, 1)]$
20736.o1 20736.o \( 2^{8} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $13.86959219$ $[0, 0, 0, -881064, -318316608]$ \(y^2=x^3-881064x-318316608\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.2, 104.56.1.?, 117.42.0.?, $\ldots$ $[(8625336/89, 2586264048/89)]$
20736.o2 20736.o \( 2^{8} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $1.066891707$ $[0, 0, 0, 216, 1728]$ \(y^2=x^3+216x+1728\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.1, 104.56.1.?, 117.42.0.?, $\ldots$ $[(24, 144)]$
20736.p1 20736.p \( 2^{8} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $1$ $[0, 0, 0, -24474, 1473688]$ \(y^2=x^3-24474x+1473688\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.2, 104.56.1.?, 117.42.0.?, $\ldots$ $[ ]$
20736.p2 20736.p \( 2^{8} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.14.0.1 13B $1$ $[0, 0, 0, 6, -8]$ \(y^2=x^3+6x-8\) 8.2.0.a.1, 13.14.0.a.1, 52.28.0.b.1, 104.56.1.?, 117.42.0.?, $\ldots$ $[ ]$
33282.p1 33282.p \( 2 \cdot 3^{2} \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $1$ $[1, -1, 0, -1360210725, 21751296351903]$ \(y^2+xy=x^3-x^2-1360210725x+21751296351903\) 8.2.0.a.1, 13.28.0.a.2, 39.56.0-13.a.2.1, 104.56.1.?, 312.112.1.?, $\ldots$ $[ ]$
33282.p2 33282.p \( 2 \cdot 3^{2} \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $1$ $[1, -1, 0, -22107915, -40022756667]$ \(y^2+xy=x^3-x^2-22107915x-40022756667\) 8.2.0.a.1, 13.28.0.a.1, 39.56.0-13.a.1.1, 104.56.1.?, 312.112.1.?, $\ldots$ $[ ]$
33282.q1 33282.q \( 2 \cdot 3^{2} \cdot 43^{2} \) $2$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $28.67327304$ $[1, -1, 1, -735647, -273388935]$ \(y^2+xy+y=x^3-x^2-735647x-273388935\) 8.2.0.a.1, 13.28.0.a.2, 104.56.1.?, 559.84.2.?, 1677.168.2.?, $\ldots$ $[(60221/4, 14228433/4), (110063/2, 36385671/2)]$
33282.q2 33282.q \( 2 \cdot 3^{2} \cdot 43^{2} \) $2$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $0.169664337$ $[1, -1, 1, -11957, 506445]$ \(y^2+xy+y=x^3-x^2-11957x+506445\) 8.2.0.a.1, 13.28.0.a.1, 104.56.1.?, 559.84.2.?, 1677.168.2.?, $\ldots$ $[(47, 192), (71, 72)]$
88752.a1 88752.a \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $1$ $[0, -1, 0, -2418152400, 51558628389696]$ \(y^2=x^3-x^2-2418152400x+51558628389696\) 8.2.0.a.1, 13.28.0.a.2, 52.56.0-13.a.2.1, 104.112.1.?, 559.84.2.?, $\ldots$ $[ ]$
88752.a2 88752.a \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $1$ $[0, -1, 0, -39302960, -94868756544]$ \(y^2=x^3-x^2-39302960x-94868756544\) 8.2.0.a.1, 13.28.0.a.1, 52.56.0-13.a.1.1, 104.112.1.?, 559.84.2.?, $\ldots$ $[ ]$
88752.bm1 88752.bm \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $1$ $[0, 1, 0, -1307816, -648904908]$ \(y^2=x^3+x^2-1307816x-648904908\) 8.2.0.a.1, 13.28.0.a.2, 104.56.1.?, 559.84.2.?, 2236.168.2.?, $\ldots$ $[ ]$
88752.bm2 88752.bm \( 2^{4} \cdot 3 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $1$ $[0, 1, 0, -21256, 1186292]$ \(y^2=x^3+x^2-21256x+1186292\) 8.2.0.a.1, 13.28.0.a.1, 104.56.1.?, 559.84.2.?, 2236.168.2.?, $\ldots$ $[ ]$
266256.b1 266256.b \( 2^{4} \cdot 3^{2} \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $1$ $[0, 0, 0, -11770347, 17508662170]$ \(y^2=x^3-11770347x+17508662170\) 8.2.0.a.1, 13.28.0.a.2, 104.56.1.?, 559.84.2.?, 4472.168.9.?, $\ldots$ $[ ]$
266256.b2 266256.b \( 2^{4} \cdot 3^{2} \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $1$ $[0, 0, 0, -191307, -32221190]$ \(y^2=x^3-191307x-32221190\) 8.2.0.a.1, 13.28.0.a.1, 104.56.1.?, 559.84.2.?, 4472.168.9.?, $\ldots$ $[ ]$
266256.cz1 266256.cz \( 2^{4} \cdot 3^{2} \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $89.27493772$ $[0, 0, 0, -21763371603, -1392061203150190]$ \(y^2=x^3-21763371603x-1392061203150190\) 8.2.0.a.1, 13.28.0.a.2, 104.56.1.?, 156.56.0.?, 312.112.1.?, $\ldots$ $[(4418573732912274968700803610668478665365495/824408649048879059, 9285605288685997787727763876377090639697227650869408557232697550/824408649048879059)]$
266256.cz2 266256.cz \( 2^{4} \cdot 3^{2} \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $6.867302902$ $[0, 0, 0, -353726643, 2561810153330]$ \(y^2=x^3-353726643x+2561810153330\) 8.2.0.a.1, 13.28.0.a.1, 104.56.1.?, 156.56.0.?, 312.112.1.?, $\ldots$ $[(5935, 819450)]$
277350.e1 277350.e \( 2 \cdot 3 \cdot 5^{2} \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $96.02698389$ $[1, 1, 0, -3778363125, -100700446073625]$ \(y^2+xy=x^3+x^2-3778363125x-100700446073625\) 8.2.0.a.1, 13.28.0.a.2, 65.56.0-13.a.2.1, 104.56.1.?, 520.112.1.?, $\ldots$ $[(3016864996273808765226644786435268628837290585/69765241863286715119, 164747217721372405827208990503148714279595313908104868910764669646780/69765241863286715119)]$
277350.e2 277350.e \( 2 \cdot 3 \cdot 5^{2} \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $7.386691069$ $[1, 1, 0, -61410875, 185290540125]$ \(y^2+xy=x^3+x^2-61410875x+185290540125\) 8.2.0.a.1, 13.28.0.a.1, 65.56.0-13.a.1.1, 104.56.1.?, 520.112.1.?, $\ldots$ $[(15335, 1680545)]$
277350.do1 277350.do \( 2 \cdot 3 \cdot 5^{2} \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $1$ $[1, 0, 0, -2043463, 1266370667]$ \(y^2+xy=x^3-2043463x+1266370667\) 8.2.0.a.1, 13.28.0.a.2, 104.56.1.?, 559.84.2.?, 2795.168.2.?, $\ldots$ $[ ]$
277350.do2 277350.do \( 2 \cdot 3 \cdot 5^{2} \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $1$ $[1, 0, 0, -33213, -2333583]$ \(y^2+xy=x^3-33213x-2333583\) 8.2.0.a.1, 13.28.0.a.1, 104.56.1.?, 559.84.2.?, 2795.168.2.?, $\ldots$ $[ ]$
355008.b1 355008.b \( 2^{6} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $10.85897353$ $[0, -1, 0, -5231265, -5186007999]$ \(y^2=x^3-x^2-5231265x-5186007999\) 8.2.0.a.1, 13.28.0.a.2, 104.56.1.?, 559.84.2.?, 1118.168.2.?, $\ldots$ $[(330581/11, 40088416/11)]$
355008.b2 355008.b \( 2^{6} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $0.835305656$ $[0, -1, 0, -85025, 9575361]$ \(y^2=x^3-x^2-85025x+9575361\) 8.2.0.a.1, 13.28.0.a.1, 104.56.1.?, 559.84.2.?, 1118.168.2.?, $\ldots$ $[(253, 2048)]$
355008.ce1 355008.ce \( 2^{6} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $218.6150508$ $[0, -1, 0, -9672609601, -412459354507967]$ \(y^2=x^3-x^2-9672609601x-412459354507967\) 8.2.0.a.1, 13.28.0.a.2, 52.56.0-13.a.2.3, 104.112.1.?, 559.84.2.?, $\ldots$ $[(826914765761060153447309021156718076416649822708088162842762190165895905957676871303758247090424761/62498167104408780526662719703043600027417984435, 20465083331789758521151483371146431509472026430584229623914071291876377216022307768458142960472036395021165164125719591902377614636843509977303678816/62498167104408780526662719703043600027417984435)]$
355008.ce2 355008.ce \( 2^{6} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $16.81654237$ $[0, -1, 0, -157211841, 759107264193]$ \(y^2=x^3-x^2-157211841x+759107264193\) 8.2.0.a.1, 13.28.0.a.1, 52.56.0-13.a.1.3, 104.112.1.?, 559.84.2.?, $\ldots$ $[(3249532569/755, 94406294857728/755)]$
355008.cf1 355008.cf \( 2^{6} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $0.697149968$ $[0, 1, 0, -5231265, 5186007999]$ \(y^2=x^3+x^2-5231265x+5186007999\) 8.2.0.a.1, 13.28.0.a.2, 104.56.1.?, 559.84.2.?, 2236.168.2.?, $\ldots$ $[(-195, 78732)]$
355008.cf2 355008.cf \( 2^{6} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $9.062949586$ $[0, 1, 0, -85025, -9575361]$ \(y^2=x^3+x^2-85025x-9575361\) 8.2.0.a.1, 13.28.0.a.1, 104.56.1.?, 559.84.2.?, 2236.168.2.?, $\ldots$ $[(29725, 5124708)]$
355008.ej1 355008.ej \( 2^{6} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.2 13B.4.2 $4.129786093$ $[0, 1, 0, -9672609601, 412459354507967]$ \(y^2=x^3+x^2-9672609601x+412459354507967\) 8.2.0.a.1, 13.28.0.a.2, 26.56.0-13.a.2.2, 104.112.1.?, 559.84.2.?, $\ldots$ $[(-114022, 5741145)]$
355008.ej2 355008.ej \( 2^{6} \cdot 3 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2, 13$ 8.2.0.1, 13.28.0.1 13B.4.1 $53.68721921$ $[0, 1, 0, -157211841, -759107264193]$ \(y^2=x^3+x^2-157211841x-759107264193\) 8.2.0.a.1, 13.28.0.a.1, 26.56.0-13.a.1.1, 104.112.1.?, 559.84.2.?, $\ldots$ $[(38352569954273661131855442/46523598463, 143081490329124184617308720246413533195/46523598463)]$
  displayed columns for results