Properties

Label 9996m
Number of curves $1$
Conductor $9996$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 9996m1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - 7 T + 13 T^{2}\) 1.13.ah
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9996m do not have complex multiplication.

Modular form 9996.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{9} - q^{11} + 7 q^{13} - q^{15} + q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 9996m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9996.m1 9996m1 \([0, 1, 0, 1699, -28449]\) \(17997824/22491\) \(-677387176704\) \([]\) \(13824\) \(0.95617\) \(\Gamma_0(N)\)-optimal