Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-120563389x-509599053937\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-120563389xz^2-509599053937z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-9765634536x-371468413416492\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(13946, 722211)$ | $2.1382844302623572463095193621$ | $\infty$ |
Integral points
\((13946,\pm 722211)\)
Invariants
Conductor: | $N$ | = | \( 9996 \) | = | $2^{2} \cdot 3 \cdot 7^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-11919499713990426587904$ | = | $-1 \cdot 2^{8} \cdot 3^{9} \cdot 7^{8} \cdot 17^{7} $ |
|
j-invariant: | $j$ | = | \( -\frac{6434900743458429657088}{395758108932291} \) | = | $-1 \cdot 2^{13} \cdot 3^{-9} \cdot 7^{-2} \cdot 17^{-7} \cdot 922679^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2959577783999786088110668642$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.8609045834990250833135690782$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0628298686979285$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.322172114029901$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.1382844302623572463095193621$ |
|
Real period: | $\Omega$ | ≈ | $0.022780544184155038720164437667$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 126 $ = $ 1\cdot3^{2}\cdot2\cdot7 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.1376216506771840182132115470 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.137621651 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.022781 \cdot 2.138284 \cdot 126}{1^2} \\ & \approx 6.137621651\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1451520 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$3$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 |
$7$ | $2$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$17$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 102 = 2 \cdot 3 \cdot 17 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 101 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 35 & 2 \\ 35 & 3 \end{array}\right),\left(\begin{array}{rr} 37 & 2 \\ 37 & 3 \end{array}\right),\left(\begin{array}{rr} 101 & 2 \\ 100 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[102])$ is a degree-$11280384$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/102\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 2499 = 3 \cdot 7^{2} \cdot 17 \) |
$3$ | split multiplicative | $4$ | \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \) |
$7$ | additive | $32$ | \( 12 = 2^{2} \cdot 3 \) |
$17$ | split multiplicative | $18$ | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 9996.q consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 1428.a1, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.204.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.2122416.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | ord | add | ord | ord | split | ord | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 2 | 1 | - | 1 | 1 | 2 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.