Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-146869x-22121903\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-146869xz^2-22121903z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-11896416x-16162556508\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(7719, 677278)$ | $6.1096642308267377187733956329$ | $\infty$ |
Integral points
\((7719,\pm 677278)\)
Invariants
Conductor: | $N$ | = | \( 9996 \) | = | $2^{2} \cdot 3 \cdot 7^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-9592479809305344$ | = | $-1 \cdot 2^{8} \cdot 3^{3} \cdot 7^{10} \cdot 17^{3} $ |
|
j-invariant: | $j$ | = | \( -\frac{11632923639808}{318495051} \) | = | $-1 \cdot 2^{19} \cdot 3^{-3} \cdot 7^{-4} \cdot 17^{-3} \cdot 281^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8478882297544113128090875783$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.41283503485345778731158979227$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0308336303888312$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.141371466817552$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.1096642308267377187733956329$ |
|
Real period: | $\Omega$ | ≈ | $0.12174059027380821739036587286$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 3\cdot1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.4627647790137170573304629701 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.462764779 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.121741 \cdot 6.109664 \cdot 6}{1^2} \\ & \approx 4.462764779\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 82944 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$7$ | $2$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
$17$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 714 = 2 \cdot 3 \cdot 7 \cdot 17 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 120 & 91 \\ 343 & 36 \end{array}\right),\left(\begin{array}{rr} 547 & 210 \\ 315 & 631 \end{array}\right),\left(\begin{array}{rr} 305 & 0 \\ 0 & 713 \end{array}\right),\left(\begin{array}{rr} 709 & 6 \\ 708 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[714])$ is a degree-$2842656768$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/714\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 2499 = 3 \cdot 7^{2} \cdot 17 \) |
$3$ | nonsplit multiplicative | $4$ | \( 196 = 2^{2} \cdot 7^{2} \) |
$7$ | additive | $32$ | \( 204 = 2^{2} \cdot 3 \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 9996.g
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 1428.d1, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.204.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.2122416.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.7260624.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.14274288.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.52716660869376.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.47605723109671630831035272000735440846123008.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.9238795814549475655042093056.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ord | add | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.