Show commands: SageMath
Rank
The elliptic curves in class 99450.dq have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 99450.dq do not have complex multiplication.Modular form 99450.2.a.dq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 3 & 4 & 6 & 12 & 12 \\ 2 & 1 & 2 & 6 & 2 & 3 & 6 & 6 \\ 4 & 2 & 1 & 12 & 4 & 6 & 12 & 3 \\ 3 & 6 & 12 & 1 & 12 & 2 & 4 & 4 \\ 4 & 2 & 4 & 12 & 1 & 6 & 3 & 12 \\ 6 & 3 & 6 & 2 & 6 & 1 & 2 & 2 \\ 12 & 6 & 12 & 4 & 3 & 2 & 1 & 4 \\ 12 & 6 & 3 & 4 & 12 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 99450.dq
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
99450.dq1 | 99450cr8 | \([1, -1, 1, -1482975001355, 695102884051264647]\) | \(31664865542564944883878115208137569/103216295812500\) | \(1175698119489257812500\) | \([2]\) | \(637009920\) | \(5.1282\) | |
99450.dq2 | 99450cr6 | \([1, -1, 1, -92685938855, 10860999629389647]\) | \(7730680381889320597382223137569/441370202660156250000\) | \(5027482464675842285156250000\) | \([2, 2]\) | \(318504960\) | \(4.7816\) | |
99450.dq3 | 99450cr7 | \([1, -1, 1, -92517868355, 10902350686786647]\) | \(-7688701694683937879808871873249/58423707246780395507812500\) | \(-665482540357857942581176757812500\) | \([2]\) | \(637009920\) | \(5.1282\) | |
99450.dq4 | 99450cr5 | \([1, -1, 1, -18308984855, 953434712977647]\) | \(59589391972023341137821784609/8834417507562311995200\) | \(100629536922076960070325000000\) | \([2]\) | \(212336640\) | \(4.5789\) | |
99450.dq5 | 99450cr3 | \([1, -1, 1, -5803376855, 169057784545647]\) | \(1897660325010178513043539489/14258428094958372000000\) | \(162412407519135206062500000000\) | \([2]\) | \(159252480\) | \(4.4351\) | |
99450.dq6 | 99450cr2 | \([1, -1, 1, -1250384855, 11970578977647]\) | \(18980483520595353274840609/5549773448629762560000\) | \(63215388188298389160000000000\) | \([2, 2]\) | \(106168320\) | \(4.2323\) | |
99450.dq7 | 99450cr1 | \([1, -1, 1, -471632855, -3796034014353]\) | \(1018563973439611524445729/42904970360310988800\) | \(488714428010417356800000000\) | \([2]\) | \(53084160\) | \(3.8858\) | \(\Gamma_0(N)\)-optimal |
99450.dq8 | 99450cr4 | \([1, -1, 1, 3348183145, 79560331441647]\) | \(364421318680576777174674911/450962301637624725000000\) | \(-5136742467091069133203125000000\) | \([2]\) | \(212336640\) | \(4.5789\) |