Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-4218849301x+105473711020378\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-4218849301xz^2+105473711020378z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-341726793408x+76889310153475365\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(37462, 0)$ | $0$ | $2$ |
Integral points
\( \left(37462, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 99372 \) | = | $2^{2} \cdot 3 \cdot 7^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $15408369033559661203965648$ | = | $2^{4} \cdot 3^{8} \cdot 7^{12} \cdot 13^{9} $ |
|
j-invariant: | $j$ | = | \( \frac{416013434950254592}{771895089} \) | = | $2^{26} \cdot 3^{-8} \cdot 7^{-6} \cdot 11^{3} \cdot 167^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.0890810838928470574254585960$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.96136493108238941636025593595$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.1844185766908968$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.787575269462354$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.059941580486294407070024852070$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.9970790243147203535012426035 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $25$ = $5^2$ (exact) |
|
BSD formula
$$\begin{aligned} 2.997079024 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{25 \cdot 0.059942 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 2.997079024\end{aligned}$$
Modular invariants
Modular form 99372.2.a.z
For more coefficients, see the Downloads section to the right.
Modular degree: | 86261760 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
$3$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
$7$ | $2$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
$13$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.31 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \), index $96$, genus $3$, and generators
$\left(\begin{array}{rr} 11 & 16 \\ 4304 & 4275 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 8 \\ 8 & 5 \end{array}\right),\left(\begin{array}{rr} 4353 & 16 \\ 4352 & 17 \end{array}\right),\left(\begin{array}{rr} 1696 & 5 \\ 2403 & 16 \end{array}\right),\left(\begin{array}{rr} 1877 & 26 \\ 3014 & 3817 \end{array}\right),\left(\begin{array}{rr} 1643 & 26 \\ 786 & 2777 \end{array}\right),\left(\begin{array}{rr} 3 & 28 \\ 4292 & 3659 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1457 & 16 \\ 2920 & 129 \end{array}\right),\left(\begin{array}{rr} 1093 & 16 \\ 8 & 129 \end{array}\right)$.
The torsion field $K:=\Q(E[4368])$ is a degree-$649240510464$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4368\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 637 = 7^{2} \cdot 13 \) |
$3$ | nonsplit multiplicative | $4$ | \( 33124 = 2^{2} \cdot 7^{2} \cdot 13^{2} \) |
$7$ | additive | $32$ | \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \) |
$13$ | additive | $62$ | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 99372z
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 14196l1, its twist by $-91$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.6889792.2 | \(\Z/4\Z\) | not in database |
$8$ | 8.4.47469233803264.11 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.47469233803264.31 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 13 |
---|---|---|---|---|---|
Reduction type | add | nonsplit | ord | add | add |
$\lambda$-invariant(s) | - | 0 | 2 | - | - |
$\mu$-invariant(s) | - | 0 | 0 | - | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.