Properties

Label 99372.j
Number of curves $1$
Conductor $99372$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 99372.j1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 99372.j do not have complex multiplication.

Modular form 99372.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} + q^{15} - 2 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 99372.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
99372.j1 99372w1 \([0, -1, 0, 1699, -95031]\) \(8192/63\) \(-4168682429184\) \([]\) \(138240\) \(1.1030\) \(\Gamma_0(N)\)-optimal