Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-37792x-1678509\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-37792xz^2-1678509z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-604675x-108029250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(234, 1383)$ | $3.4007035301280673174382495937$ | $\infty$ |
$(3469/16, 27187/64)$ | $6.1202201780325740864227331385$ | $\infty$ |
$(-166, 83)$ | $0$ | $2$ |
$(214, -107)$ | $0$ | $2$ |
Integral points
\( \left(-166, 83\right) \), \( \left(214, -107\right) \), \( \left(234, 1383\right) \), \( \left(234, -1617\right) \), \( \left(2714, 139643\right) \), \( \left(2714, -142357\right) \)
Invariants
Conductor: | $N$ | = | \( 99275 \) | = | $5^{2} \cdot 11 \cdot 19^{2}$ |
|
Discriminant: | $\Delta$ | = | $2223652969140625$ | = | $5^{8} \cdot 11^{2} \cdot 19^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{8120601}{3025} \) | = | $3^{3} \cdot 5^{-2} \cdot 11^{-2} \cdot 67^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6446993755455388619332899122$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.63223907025473155537160347036$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0555982735754514$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.757560817591352$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $18.274221231433683534331037552$ |
|
Real period: | $\Omega$ | ≈ | $0.35319785928480599945080316371$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $12.908831638078656733625665294 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 12.908831638 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.353198 \cdot 18.274221 \cdot 32}{4^2} \\ & \approx 12.908831638\end{aligned}$$
Modular invariants
Modular form 99275.2.a.d
For more coefficients, see the Downloads section to the right.
Modular degree: | 331776 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
$11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$19$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4180 = 2^{2} \cdot 5 \cdot 11 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 761 & 1102 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 569 & 3078 \\ 2774 & 1101 \end{array}\right),\left(\begin{array}{rr} 3193 & 2204 \\ 228 & 1331 \end{array}\right),\left(\begin{array}{rr} 4177 & 4 \\ 4176 & 5 \end{array}\right),\left(\begin{array}{rr} 2639 & 0 \\ 0 & 4179 \end{array}\right)$.
The torsion field $K:=\Q(E[4180])$ is a degree-$1560176640000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4180\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 9025 = 5^{2} \cdot 19^{2} \) |
$5$ | additive | $18$ | \( 3971 = 11 \cdot 19^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 9025 = 5^{2} \cdot 19^{2} \) |
$19$ | additive | $182$ | \( 275 = 5^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 99275.d
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 55.a3, its twist by $-95$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{5}, \sqrt{-19})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{11}, \sqrt{95})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{19}, \sqrt{-55})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | ss | add | ss | nonsplit | ord | ord | add | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 3 | 2,2 | - | 2,4 | 2 | 2 | 4 | - | 2 | 4 | 2 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | 0 | 0,0 | - | 0,0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.