Properties

Label 98553r
Number of curves $1$
Conductor $98553$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 98553r1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 98553r do not have complex multiplication.

Modular form 98553.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} - q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} + q^{7} + q^{9} + 4 q^{10} - q^{11} - 2 q^{12} + q^{13} - 2 q^{14} + 2 q^{15} - 4 q^{16} - 2 q^{17} - 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 98553r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
98553.a1 98553r1 \([0, -1, 1, -5174, 221276]\) \(-325660672/254163\) \(-11957322252603\) \([]\) \(259200\) \(1.2080\) \(\Gamma_0(N)\)-optimal