Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3-x^2-4676875x+3894565092\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3-x^2z-4676875xz^2+3894565092z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-6061230432x+181632094180560\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1248, 180)$ | $1.3010988322790236747935940033$ | $\infty$ |
| $(1970, 48193)$ | $3.4261682013102572650626568993$ | $\infty$ |
Integral points
\( \left(-2134, 64438\right) \), \( \left(-2134, -64439\right) \), \( \left(1248, 180\right) \), \( \left(1248, -181\right) \), \( \left(1272, 1427\right) \), \( \left(1272, -1428\right) \), \( \left(1970, 48193\right) \), \( \left(1970, -48194\right) \)
Invariants
| Conductor: | $N$ | = | \( 98553 \) | = | $3 \cdot 7 \cdot 13 \cdot 19^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-99018585573805443$ | = | $-1 \cdot 3 \cdot 7^{5} \cdot 13^{3} \cdot 19^{7} $ |
|
| j-invariant: | $j$ | = | \( -\frac{240474752802390016}{2104723803} \) | = | $-1 \cdot 2^{15} \cdot 3^{-1} \cdot 7^{-5} \cdot 13^{-3} \cdot 19^{-1} \cdot 19433^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4280561435965997179346792537$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.95583665401337948793016553776$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9678697383814798$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.0170712960198625$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.3438304022843066027694163701$ |
|
| Real period: | $\Omega$ | ≈ | $0.30315647127884383392790513289$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot1\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $5.2674411863610842067325025163 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.267441186 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.303156 \cdot 4.343830 \cdot 4}{1^2} \\ & \approx 5.267441186\end{aligned}$$
Modular invariants
Modular form 98553.2.a.k
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2678400 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
| $13$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $19$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10374 = 2 \cdot 3 \cdot 7 \cdot 13 \cdot 19 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 6385 & 2 \\ 6385 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 8893 & 2 \\ 8893 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 10373 & 0 \end{array}\right),\left(\begin{array}{rr} 10373 & 2 \\ 10372 & 3 \end{array}\right),\left(\begin{array}{rr} 6917 & 2 \\ 6917 & 3 \end{array}\right),\left(\begin{array}{rr} 8191 & 2 \\ 8191 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[10374])$ is a degree-$936732324003840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10374\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | nonsplit multiplicative | $4$ | \( 2527 = 7 \cdot 19^{2} \) |
| $5$ | good | $2$ | \( 14079 = 3 \cdot 13 \cdot 19^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 14079 = 3 \cdot 13 \cdot 19^{2} \) |
| $13$ | nonsplit multiplicative | $14$ | \( 7581 = 3 \cdot 7 \cdot 19^{2} \) |
| $19$ | additive | $200$ | \( 273 = 3 \cdot 7 \cdot 13 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 98553a consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 5187f1, its twist by $-19$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.20748.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.2232897187248.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | nonsplit | ord | nonsplit | ord | nonsplit | ord | add | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3,2 | 2 | 2 | 2 | 2 | 2 | 2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
| $\mu$-invariant(s) | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.