Properties

Label 980.d
Number of curves $1$
Conductor $980$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 980.d1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 980.d do not have complex multiplication.

Modular form 980.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 2 q^{9} - q^{11} + 5 q^{13} - q^{15} - q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 980.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
980.d1 980e1 \([0, -1, 0, 915, 2185]\) \(8192/5\) \(-51652616960\) \([]\) \(672\) \(0.74484\) \(\Gamma_0(N)\)-optimal